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1 Introduction

The analysis of medical data, particularly pathology reports, is a critical area in healthcare research and
diagnostics. Pathology reports contain valuable information about a patient’s diagnosis, treatment, and
prognosis, making them a rich resource for data-driven medical insights. However, the unstructured
nature of these reports poses a significant challenge for automated processing and analysis.

This project aims to address the challenge of extracting medical information from unstructured
pathology reports, specifically those available from The Cancer Genome Atlas [TCGA]. By leveraging
a Large Language Models (LLM), we propose a methodology to convert these reports into a machine-
readable format and extract relevant medical variables in a tabular format.

The successful implementation of this approach has the potential to streamline the analysis of
pathology reports, reducing manual extraction time, enabling advanced analytics and allowing
pathologists to focus on more critical tasks. In addition, the modular pipeline is transferable to other
applications, such as the analysis of company annual reports.

Previous work in this domain has primarily focused on rule-based or traditional machine learning
methods, which often require extensive manual effort and domain expertise. In contrast, our approach
seeks to harness the power of LLMs to automate the extraction process and adapt to the variations
inherent in medical reports.

In this report, we provide a description of the data utilized and a comprehensive overview of our
pipeline encompassing data acquisition, pre-processing, variable extraction via Large Language
Models (LLMs), post-processing, and subsequent output analysis.

Figure 1: High-level Overview of Pipeline



2 The Data

The data used in this project consists of 11,324 PDF pathology reports obtained from The Cancer
Genome Atlas [TCGA]. These reports are scans of documents related to cancer pathology, containing
information such as examination results, diagnosis details (including cancer type, location, and tumor
size), and more. Due to the nature of these reports, the format is heterogeneous with no standard
structure, and some parts may even be handwritten, adding to the complexity of the data.

The pathology reports were downloaded using the GDC Data Transfer Tool Client, a command-line
utility designed to support the downloading of data from the Genetic Data Commons (GDC). This
tool facilitated the efficient retrieval of the large dataset required for our analysis.

To evaluate the performance of our model, we manually annotated 100 reports, extracting the target
variables to create a gold standard dataset. We also have a 30 report validation set to measure possible
overfitting of our standardization (see section 3.3). This annotated dataset serves as a benchmark
to assess the accuracy and reliability of the information extracted by the LLM. An excerpt from an
example pathology report with the corresponding manual annotation can be seen in figure 2.

Figure 2: Example Pathology Report: Raw PDF file (left), corresponding gold standard annotation
(right).

3 The Pipeline

Our pipeline for processing and analyzing the pathology reports consists of five main steps:

Figure 3: Detailed Pipeline

See Section 2 for data acquisition.

3.1 Data Pre-processing

The data preprocessing stage involves two substeps: Conversion of PDF to text and a text recovery /
spell-check step. Let x denote a pathology report.
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1. Conversion of PDF to Text: We use Optical Character Recognition (OCR) technology to
convert the scanned PDF documents into text format (with the Python-tesseract package).
This conversion is essential as Large Language Models (LLMs) require text as input. LLMs
are trained on language in the form of text tokens, learning patterns and relationships within
the text to generate meaningful output. The result of this step are txt-files of the transformed
pathology reports. We denote the transformation of pdf to txt by g(x) = x̃

2. LLM Call for OCR Error Correction and Text Recovery: Given that OCR technology
is not infallible and does not perform spell checking, we employ an LLM to recover from
misspellings and errors introduced during the OCR process. This step is purposefully
separated from the actual variable extraction LLM call, allowing us to enable or disable
it and observe the impact on the results. We denote the result after spell-check by x̃′ =
h(x̃) = h(g(x))

3.2 Variable Extraction

In this step, we use a Large Language Model (LLM), denoted M , to extract target variables from the
text files obtained after data pre-processing. This involves feeding a carefully crafted prompt p to the
LLM along with the text from each file (x̃′). The output is expected to be a concise extraction of the
desired target variables, structured in a way that is usable for further analysis. We denote these raw
model predictions as t̂ = f(x̃′, p;M), where f can also take in text files without spell-check (x̃).

3.3 Post-processing

The ultimate goal of our project is to populate a pre-defined tabular format with information from the
pathology reports. The target scheme for this table is fixed and reflected in the gold standard dataset
(see figure 2). For example, the variable laterality should only be reported as "left", "right" or "NA".
As the raw model output t̂ is not necessarily in this target format, we need to apply standardization
functions (customized per variable) to ensure consistency with the target format. The standardized
model output is denoted by t̂(s) = s(t̂). In this standardized form, it is also possible for us to make
direct comparisons with the annotated ground truth labels t for evaluation. The standardization
functions are developed based on the insights gained from the training data (overfitting is measured
on the validation set subsequently). They include regex stripping of the raw model output (e.g.
"Laterality: left" to "left") and direct as well as fuzzy matching between t̂ and allowed classes per
variable.

Figure 4: Example Raw Model Output.

3.4 Output Analysis

The accuracy of the predictions made by the LLM is measured using our gold standard dataset, which
serves as a benchmark for performance evaluation. The evaluation metrics used for performance
assessment are discussed in section 4.
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4 Evaluation Metrics

Majority Class Guess Accuracy (Baseline): In the context of evaluating the performance for
extracting data from pathology reports, the Majority Class Guess Accuracy (ACCMCG) serves as a
baseline metric. This metric calculates the accuracy achieved by a model if it simply predicts the
most frequent category in the (gold standard) dataset for every target variable. Essentially, it measures
the proportion of the most common class in the dataset (tMC), assuming that the model defaults to
this prediction irrespective of the input:

AccMCG =
Frequency of most common label

Total number of instances

=
1

n

n∑
i=1

1(ti = tMC)
(1)

While rudimentary, this metric is crucial as it provides a lower bound of performance; any sophis-
ticated model should surpass this baseline to demonstrate its effectiveness. Employing Majority
Class Guess Accuracy helps in assessing whether the model genuinely learns from the data or merely
capitalizes on class imbalances.

Accuracy Score: The accuracy score is our fundamental evaluation metric, representing the propor-
tion of correct predictions made by the model out of the total number of cases examined:

Acc =
Number of correct predictions

Total number of instances

=
1

n

n∑
i=1

1(ti = t̂
(s)
i )

(2)

This metric provides a straightforward and intuitive measure of the model’s overall effectiveness in
correctly classifying instances. However, it is most useful in scenarios where the classes are relatively
balanced, as its reliability can be compromised when there is significant class imbalance. To calculate
the accuracy score, it is essential to have the model outputs standardized as t̂(s).

Cohen’s Kappa: Cohen’s Kappa is a statistical measure used to evaluate the reliability of agreement
between two annotators who each classify items into mutually exclusive categories. It applies for
categorical variables and accounts for agreement by random chance. The higher the score, the
better. In our use case, we define annotator one as the gold standard and annotator two as the model
prediction. Cohen’s Kappa is then defined as:

κ =
Po − Pe

1− Pe
(3)

where Po the proportion of items that the annotators agree upon (relative observed agreement among
annotators) and Pe the hypothetical probability of chance agreement. Unlike simple accuracy, Cohen’s
Kappa provides a more robust assessment of the model’s performance, especially in imbalanced
datasets. A Kappa value of 1 indicates perfect agreement, while a value of 0 suggests no agreement
beyond what is expected by chance.

5 Results

During our experiments, we identified five main findings presented below. These insights were
derived from systematic experiments where we varied several parameters within our extraction
pipeline, including the nature of the prompts, the underlying models used, and the application of
spell-checking technologies, among others. This comprehensive approach allowed us to dissect the
components of our methodology and identify key areas for improvement and further research. The
best configuration, used as default during the experiments, was: Model = LLAMA3 (8bn), Prompt:
Detailed instruction - few-shot, Spell-check: deactivated, Dataset: Training.
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Extraction performance varies by variable

Across a range of variables, our model demonstrates a notable capacity to outperform the baseline set
by the majority class guess. Overall, the model achieves exceptionally high accuracy on variables
like laterality, cancer type and tumor location, surpassing the baseline by 49%pt., 46%pt., and 33%pt.
respectively (see figure 5).

Figure 5: Accuracy Score vs. Majority Class Guess Accuracy across eight target variables.

However, the model encounters challenges in variables that require deeper comprehension, such as
Margin and Histological Grade, as well as in variables characterized by significant class imbalances,
exemplified by the binary decision in lymph nodes examination (yes/no). To enhance performance on
these variables, implementing more finely tuned standardization functions could be beneficial. For in-
stance, for Histological Grade, which involves multiple scoring mechanisms and scales, incorporating
these variations into the standardization process may lead to improved model performance.

Note that non-categorical values do not have a majority class guess accuracy. For any categorical
variable, we also produce a confusion matrix showing the true vs. predicted label distribution. From
these confusion matrices, we can also derive our three evaluation metrics.

Figure 6: Confusion Matrix for Laterality: Majority Class Guess - 45%, Accuracy Score - 95%,
Cohen’s Kappa: 0.92.

For example, in the confusion matrix for the target variable "Laterality" (see figure 6), we have a
majority class guess accuracy of 45%, calculated by summing the values in the first row, the majority
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class "right" and dividing it by the dataset size (=100). The accuracy score of 95% is calculated by
calculating the trace and dividing by the dataset size. The cohen’s kappa value of 0.92 is high.

Another example of a confusion matrix of a target variable with lower scores ("Histological Grade")
can be seen in figure 7. The accuracy score is only slightly better than the majority class guess and
cohen’s kappa amounts just to 0.45:

Figure 7: Confusion Matrix for Histological Grade: Majority Class Guess - 43%, Accuracy Score -
58%, Cohen’s Kappa: 0.45.

Performance on validation set confirms generalizability of approach

The performance of our model on the validation set effectively confirms its generalizability. The
standardization functions in the pipeline were designed on the training data (comprised of 100
reports). To test if we overfitted to this training set, we also measure the performance on our 30 report
validation set. The results show that the model has the ability to generalize across unseen datasets, as
the accuracy scores are on the same level or even better than on the training data.

Figure 8: Accuracy Scores: Training Data vs. Validation Data.

OCR is the primary error source in extraction and the spellcheck fails to improve accuracy

Optical Character Recognition (OCR) has emerged as the primary source of errors in our data extrac-
tion pipeline, particularly struggling with pathology reports that contain tabular data or handwritten
sections. In these instances, OCR inaccuracies lead to outputs that are often unusable and beyond
the capabilities of our spell-check system to correct. Additionally, for OCR outputs that contain
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misspellings, we found that the model is capable of interpreting the misspelled text directly, rendering
a separate correction step unnecessary and ineffective. This suggests that enhancing OCR accuracy,
rather than relying on post-processing corrections, should be a focal point for improving overall
model performance.

Prompt engineering is a key lever to improve performance

In our exploration of prompt engineering to enhance model performance, we rigorously tested eight
different prompts. These prompts varied in their formulations, the degree of explanation provided, and
the inclusion of examples, ranging from few-shot scenarios with detailed instructions and example
outputs to zero-shot prompts that simply listed the target variables.

Our comparative analysis, showcased in Figure 9, reveals that the few-shot prompts significantly
outperformed the zero-shot ones, achieving on average a 33.75%pt. higher accuracy. The best
performing prompt can be seen in appendix A 7.1.

Figure 9: Accuracy Scores for varying prompts: Few-Shot vs. Zero-Shot.

Moreover, we experimented with a real one-shot example, where we included the actual text from
a sample report along with the desired extraction results for the target variables. Interestingly, this
approach did not yield any improvement in performance over the detailed few-shot instruction
prompt. This finding suggests that while specific instructions and examples generally enhance
performance, the inclusion of real report text in the prompt does not further benefit the model’s
extraction capabilities.

Specialized, newer, more powerful models improve results

In our investigation into the impact of the LLM model M itself on the extraction, we conducted
comparative analyses between Mistral 7B [Huggingface], released in September 2023, and LLAMA3
8B [Meta], launched in April 2024 (see results in figure 10). The findings indicate that LLAMA3
outperforms Mistral in terms of accuracy on all variables except for number of lypmph nodes positive
for cancer.

In general, we observed significant improvements with instruction-tuned models, which are specif-
ically fine-tuned to follow detailed instructions. These "instruct" models are adept at providing
well-formatted outputs and learning effectively from examples, making them particularly well-suited
for tasks requiring precise data extraction from complex documents. Our overall criteria for selecting
an LLM were based on several factors, including performance/accuracy, cost, size, accessibility &
compatibility, response time, and customization/fine-tuning capabilities.
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Figure 10: Accuracy Scores: Mistral vs. LLAMA3.

6 Limitations and Future Directions

While our approach has demonstrated effectiveness with high accuracy scores for some variables,
these results still fall short of the stringent standards required in medical settings, indicating the
need for further incremental improvements. Through our analysis, we have pinpointed several key
limitations (failure cases) within our current pipeline.

The primary failure point in our pipeline is the OCR technology. Current OCR inaccuracies could
potentially be mitigated by investing in a more sophisticated (and possibly paid) OCR solution, which
could provide more reliable text recognition capabilities.

Occasionally, the process of stripping the model output from the full response encounters errors.
Although this issue is marginal when using an instruct model, fine-tuning the model on an expanded
dataset of annotated data could lead to accuracy improvements.

For variables that require deep comprehension and are inherently complex, our standardization
functions sometimes fail. Manual fine-tuning of these functions, requiring numerous iterations and
the involvement of domain experts, could enhance performance.

Rarely, the model hallucinates, resulting in outright prediction errors, particularly in the context of
lengthy pathology reports. Implementing a summarization layer prior to the extraction process might
help mitigate this risk by providing a more concise representation of the report’s information, thereby
improving the model’s comprehension of the content.

Moving forward, these identified issues will guide our efforts to refine our model and extraction
techniques, aiming for a level of performance that meets the exacting standards of medical data
handling.
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7 Appendix

7.1 Appendix A

Figure 11: Best performing prompt with detailed target format instructions and output examples.
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