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1 Introduction

The ability to synthesize accurate speech from silent video footage of people speaking presents a
significant technological challenge with widespread practical applications. In scenarios where audio
is lost, corrupted, or never originally captured, reconstructing coherent and synchronized speech can
provide immense value. The task involves extracting subtle visual cues such as lip movements and
facial expressions, and translating these into corresponding speech sounds.

Potential applications of this technology are vast and significant. It can enhance media accessibility
for the hearing impaired, ensure clear communication in video calls when audio is compromised,
facilitate speech articulation in environments where traditional vocal communication is impractical,
and aid forensic analysis by reconstructing audible speech from silent surveillance footage. Each of
these applications underscores the transformative impact of this technology across various sectors.

One of the major challenges in synthesizing speech from silent video is creating audio that not only
aligns with the speaker’s lip movements but also captures their emotional nuances. Achieving realistic
speech that conveys emotions rather than sounding robotic hinges largely on the effectiveness of the
video embedding. The temporal synchronization is one of the advantages of video-conditioned audio
generation over text-based synthesis. Another one is the higher availability of audio-video training
data on the internet.

The novelty of this project lies in its innovative use of a diffusion model for audio synthesis from
silent video, diverging from the traditional supervised methods like Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs) that rely on extensive labeled datasets [see Prajwal
et al., 2020]. Luo et al. [2023] already introduced the use of a latent diffusion model to generate
audio from silent video; however, they do not generate speech and specifically exclude all speech
samples from their training data. By adopting unsupervised learning techniques, our approach allows
the model to intuitively understand and replicate the complex interactions between visual cues and
audio outputs. This not only reduces the need for large annotated datasets, but also improves the
model’s ability to generalize to diverse and novel video content, representing a significant advance in
the field of speech synthesis from visual information.

2 Methodology

2.1 Approach

Our approach integrates an architecture designed to synthesize audio from silent video footage. This
system leverages the complementary strengths of two main parts: component 1, a video encoder,



and component 2, a diffusion model, each specialized to handle distinct aspects of the audio-visual
synthesis process. The model architecture is shown in Figure 1.

Figure 1: Overview of Architecture for Video Conditioning: Video encoder and Diffusion Model.

2.1.1 Video Encoder

The video encoder is tasked with extracting essential visual features from silent videos that inform
the audio generation process. For this purpose, we employ the encoder component of a pretrained
Masked Autoencoder (MAE) [Tong et al., 2022]. Videos are presented to the model as 16x16 patches.
The pretrained model outputs a sequence of 768−dimensional vectors that we then use as features for
our downstream task. The idea is to utilize these features to enrich our system with a deep, nuanced
understanding of visual dynamics, greatly enhancing the synthesis of corresponding audio outputs.

2.1.2 Melspectrogram

Based on the literature [see Prajwal et al., 2020]. Luo et al. [2023], the diffusion model operates not
on the 1D soundwaves themselves, but on a 2D representation of the sound called Melspectrogram.
At a high-level, the Melspectrogram is the rescaled Fourier Transform of the soundwave in the
amplitude-time space, obtaining a representation in the log frequency-time space McFee et al. [2015].
This allows us to effectively visualize sound in an image, where the pixel value portrayed as color
represents the intensity of the sound in decibels.

Figure 2: Audio Pre-Processing
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2.1.3 Diffusion Model

The diffusion model is central to our approach. It conditions the generation of visual representation
of the sound to the video.

Our aim is to train a diffusion model on the Melspectrograms x0 given a video vx. More specifically,
from vx we obtain, though a separate pretrained model, an encoded version of the video denoted by
Ex. Then, a projection layer τθ is used to project up or down Ex into a tensor with a compatible
dimension with the diffusion process.

Forward process: In the forward process, Gaussian noise is gradually added to the original Melspec-
trogram x0. This operation is performed via a fixed schedule that we denote by α1, · · · , αT . T is the
total number of timesteps and ᾱt =

∏t
i=1 αi. The forward process is modeled by function q:

q(xt|x0) =
√
ᾱtx0 +

√
1− ᾱtϵ

= N (xt;
√
ᾱtx0, (1− ᾱt)I),

(1)

where ϵ ∼ N (0, I). Also

q(xt|xt−1) = N (xt;
√
αtxt−1, (1− αt)I). (2)

Loss: We train a U-Net [Ronneberger et al., 2015], denoted by ϵθ, to estimate the noise added in each
timestep given the encoded video. This architecture has proven robust capabilities in generative tasks.
During training we minimize the mean squared error (MSE) between the real and predicted noise as
our objective function:

L(θ) = Ex0,t,ϵ∥ϵ− ϵθ(xt, t, Ex)∥22. (3)

One thing to note is that our implementation combines the encoded video with the timestep by adding
both, forcing them to have the same dimension. However, this is an architecture choice that can be
evaluated further.

Backward process: The backward process models the reverse of q. During sampling, after the
diffusion model is trained, we denoise a sample of Gaussian noise xT ∼ N (0, I) conditioned on the
embedding Ex to obtain a corresponding Melspectrogram. The reverse transition probability can be
expressed as:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t, Ex), σ
2
t I), (4)

where the mean and variance are defined as follows:

µθ(xt, t, Ex) =
1

√
αt

(
xt −

1− αt√
1− αt

ϵθ(xt, t, Ex)

)
, (5)

σ2
t =

1− αt−1

1− αt
(1− αt). (6)

2.2 Data

The data for this project is sourced from the Lip Reading in the Wild (LRW) dataset, available at the
Visual Geometry Group from the University of Oxford’s website [Chung and Zisserman, 2016]. The
LRW dataset is specifically designed for lip-reading tasks and contains up to 1000 utterances of 500
different words, spoken by hundreds of different speakers. Each video in the dataset is 29 frames
long, corresponding to 1.16 seconds, with the target word positioned centrally within the clip. The
videos are provided in mp4 format.

We obtained access to the LRW dataset through a formal request to the BBC, ensuring compliance
with data usage and privacy standards. For the purposes of this project, we focused our research on
a subset of the dataset to maintain a manageable scope for model training and testing, while still
providing a diverse array of phonetic contexts. We selected 39 classes among the words that start
with the letters A through C. The total number of training examples amounts to 41,698.
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2.3 Data Pre-processing

The pre-processing of the data involved several steps to prepare the audio and visual components for
integration into our model.

Audio: The audio tracks (wav files) were extracted from the corresponding video files. We then
converted these audio tracks into Melspectrograms using the librosa package McFee et al. [2015]
with a sampling rate of 24,000. To ensure that the Melspectrograms are interpretable by the diffusion
model, we pad them at the end to match an appropriate input size (in our case 128x64).

Video: Given the robust capabilities of the pretrained Video Masked Autoencoder (MAE) used for
video encoding, no additional pre-processing of the video files was necessary. Because our videos are
longer than MAE expects, we apply the MAE to different chunks of the video and concatenate the
tensors into a single one.

2.4 Implementation

The model is implemented using Python, leveraging libraries such as PyTorch for model building and
training, librosa for audio processing, and ffmpeg for handling video data.

Our project leverages custom classes based on the transformers and diffusers libraries from Hug-
gingFace. We use the UNet2DConditionModel from the diffusers and the pretrained VideoMAE
from the transformers library. The UNet is configured with 3 input and 3 output channels suitable for
RGB images. Each UNet block contains 2 ResNet layers. The number of output channels for each
block varies, with a configuration of (128, 128, 256, 256, 512, 512), allowing for a gradual increase
in feature complexity. The model uses a combination of regular ResNet blocks (DownBlock2D and
UpBlock2D) and blocks with spatial self-attention (AttnDownBlock2D and AttnUpBlock2D). For
inference, we use the DDPM-Scheduler with 1000 sampling steps [Ho et al., 2020].

To aid the training of this complex task, we perform 500 warmup steps and cosine decay of the
learning rate until 10−4.

2.5 Evaluation Metrics

For evaluation, we use two primary metrics: Accuracy score and Frobenius Norm.

The accuracy score quantifies the quality of the model’s audio generations. We use OpenAI’s Whisper-
1 [Radford et al., 2022] to convert speech to English text and then check if the ground truth label of
the conditioning data is contained in the transcribed text.

It is calculated as:

Accuracy =
Number of labels found in transcriptions

Total number of samples
(7)

Although humans can distinguish spoken words in audio files more frequently than the Whisper model,
this Speech-to-Text model allowed us to quantify whether our models were generating understandable
speech in an automated fashion. It is important to mention that this AI model frequently transcribed
spoken words such as ’cancer’ into similar-sounding words, like ’councillor’, thereby reducing its
accuracy versus human listeners. This could be caused by model hallucinations of noisy sounds at the
beginning of the generated audio that condition future generated words, making ’councillor’ more
likely than the true word ’cancer’.

3 Results

Results were gathered from three different models, which conditioned the diffusion process on
increasingly higher-dimensional data. The simplest diffusion model conditions data on integer-labeled
classes, which are transformed into one-hot encoded tensors, and fed into the trainable projection
layer τθ to be combined with the 512-dimensional timestep embedding. The second diffusion model
conditions the forward and backward processes on the 768-dimensional text embedding of the spoken
word. The third model with highest dimensionality conditions the training and sampling processes
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Figure 3: Speech to Text Accuracy

on 3136 by 768 video embeddings. The class conditioning and text conditioning models constitute
intermediate models that serve as milestones towards the video model. The correct label can be
ascertained by human listeners upon inspecting the generated audio of the class-conditioned model,
suggesting that class-conditioning the sampling process on a 512-dimensional projection of a 39
dimensional vector works relatively well. As can be observed in Figure 3, the outputs of the Class
Conditioning Model achieve 38% accuracy when fed to the Speech-to-Text Whisper model. The
training loss of the Class Conditioned model is presented in Figure 4.

Figure 4: Class Conditioning Train Loss Figure 5: Video Conditioning Train Loss

The text-conditioned model performs audibly worse than the class-conditioned model, which is
corroborated by the 6.3% Speech-to-Text accuracy shown in Figure 3. This considerable decrease in
performance can be attributed to two main reasons: first, because a single linear projection layer that
takes in 768 dimensional tensors and outputs a 512 dimensional tensor might not contain enough
nonlinearities to disentangle word vectors that are close together in word-embedding space; and
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secondly, due to the fact that we are projecting vectors down from 768 to 512 as opposed to projecting
upwards from 39 to 768, potentially leading to catastrophic data loss.

The video-conditioned model exacerbates the two aforementioned problems: the linear transformation
carried out by the projection layer takes in 2,408,448 floating-point values and reduces it to 512 values
in the video setting, undoubtedly leading to signal loss from the video information, and likely not
having sufficient expressiveness to efficiently encode the video features in 512 dimensions. Although
the audio samples generated by the model conditioned on video embeddings sound like natural
speech, the generated audio does not relate to the audio from the videos they were conditioned on:
the Whisper Speech to Text model correctly identified 3.1% of generated samples’ text label.

The Speech-to-Text transcription accuracy model rankings are corroborated by another evaluation
metric: the distribution of the distance between the generated samples and the true class samples.

Figure 6: Distribution of Frobenius Norm

As can be observed in Figure 6 above, the class-conditioned model shown in red yields samples that
are in expectation closer to the true samples in their corresponding class than the text-conditioned
and video-conditioned model, with the video-conditioned model yielding worst results. This ranking
stays consistent across all three statistics: the minimum, which is the distribution of distance to the
nearest neighbor; the mean distance; and the maximum distance.

4 Limitations

This project does encounter several limitations to consider.

We utilized a standard diffusion model in the Melspectrogram space, but an alternative could have
been employing a latent diffusion model. Latent diffusion models offer potential benefits such as
improved efficiency and potentially better handling of the high-dimensional data typical of video and
audio inputs. The exploration of a latent diffusion approach may offer insights into more effective or
efficient synthesis processes.

In terms of video feature extraction, our project solely utilized the encoder from a Masked Autoen-
coder (MAE), and projected the embedding using a single linear embedding layer. The method fell
short in capturing the nuanced audio-visual correlations critical for high-quality speech synthesis.
Exploring other models like the Contrastive Audio-Visual Pretrained (CAVP) model could potentially
enhance our approach by providing a more robust and detailed representation of audio-visual features
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[see for examplee Chen et al., 2020]. Additionally, appending more layers between the embedding
and U-Net’s timestep embedding could aid in more efficiently encoding the relevant audio-visual
features into the timestep embedding space.

One significant limitation of our study is the absence of an objective metric for audio, or more
specifically speech, quality. In this direction, we propose two proxy measurements that are aligned
with the quality of our samples; however they do not measure directly sound quality.

5 Future Directions

As mentioned in section 4, the immediate next steps would be to integrate a latent diffusion model,
explore more advanced video encoding techniques and include benchmarking against established
methods.

In terms of application, finetuning the model on individual speakers could significantly enhance the
personalization and realism of synthesized speech. The system could learn unique vocal characteris-
tics, such as pitch, tone, and speaking style, ensuring that the synthesized audio not only matches
the lip movements but also reflects the speaker’s distinct vocal traits. Moreover, advancing towards
real-time processing would enable applications in live environments, such as real-time audio synthesis
for mute video calls or live broadcast dubbing.

Another possibility would be to incorporate emotional intelligence into the models to detect and
replicate the emotional state of speakers. This could improve the naturalness of synthesized speech
and involves analyzing facial expressions and body language in addition to lip movements to infer
and generate speech with corresponding emotional tones.

As the technology progresses, it is crucial to address ethical concerns related to privacy and consent, as
well as mitigate any biases related to language, dialect, or accent to ensure fairness and inclusiveness.

In broader terms, our conditional diffusion approach to generating other modalities can be expanded
further and transferred to many different contexts. To do so, multimodal conditioning ca
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