
Genetic Algorithm for Variable Selection

STAT 243 - Final Project
Fall 2023

Authors: Sean Zhou, Sun Moon, Frederik Stihler
Department of Statistics

Instructor: Christopher Paciorek

December 13th, 2023



1. Introduction

The goal of this project is to develop a genetic algorithm for variable selection, including both
linear regression and GLMs. The results are consolidated in a Python package. The user can
input a dataset (with covariates and corresponding responses), as well as the desired type of
regression. The algortihm will perform the variable selection and tell the user which features
to use.

In general, variable selection is the process of selecting a subset of relevant predictors for the
model creation. Variable selection generally decreases the model complexity, which can make
it easier to interpret and also reduce computational complexity.

Genetic algorithms (GA) are stochastic methods usually used for optimization or search prob-
lems. They utilize principles from biological evolution and natural selection, such as selection,
crossover and mutation.

2. Programming approach

2.1 Overall structure

We identified the following main steps in the algorithm:

1. Population initialization
2. Evolution cycle for fixed number of iterations

• Fitness assessment and ranking
• Parent selection
• Genetic operators

– Crossover
– Mutation
– etc.

3. Ouput fittest individual of final population

Each (sub-)step was implemented as a modular component. We decided to use an object-
oriented programming approach, which means that the individual steps are implemented as
Python class methods. To keep the code organized in a logical order we applied inheritance
so that each step is defined in its own class. Then, these classes and methods are inherited
by the parent class “GA”, which has a primary method “select” that carries out the overall
algorithm outlined above.

2



2.2 Default parameter values and initialization

Based on the theory of Givens and Hoeting and the examples in the next sections, we have
decided on certain default parameters.

The theory suggests a population size P in the range of 𝐶 < 𝑃 < 2𝐶, where C is the number
of predictors (i.e. number of genes per chromosome). We chose the midpoint of this range as
default value if no specific population size is given by the user: 𝑃 = 1.5×𝐶. As the population
size should remain constant during the evolution of the algorithm and due to the crossover
operation requiring an even number of chromosomes, an additional chromosome is added if the
population size is odd (the user is informed about this modification). The initial population
is fully randomized (random binary choice for all loci of all chromosomes).

The default genetic operators applied per generation are single split crossover and standard
mutation. However, the user can also provide his own genetic operators (implemented on
the full population) or modify the order of execution. In addition to the default crossover, a
version with random allel selection from the parents is included in the package. The commonly
used mutation probability of 1% is set as the default.

Lastly, our algorithm does not process the input data (no normalization or scaling of the data).
This is something that the user needs to do in advance.

3. Testing

The overall genetic algorithm was tested using simulated and actual datasets, including running
OLS and logit models from the “How Couples Meet” and “Stay Together” survey as well as
the baseball data set provided by Givens and Hoeting. The individual compoment functions
of the algorithm were also tested in unit tests (see pytest test suite for details).

4. Results

4.1 Example 1: Baseball data

We first run the algorithm for the baseball salaries dataset.

3



One hundred generations of size 26 were used. The data set includes 27 predictors for the
response variable “salary”, so the individual chromosomes consist of 27 binary genes. The
genetic operators applied were simple split crossover and a mutation rate of 1% applied in-
dependently for each chromosome and each gene position. A clear evolution or “survival of
the fittest” can be observed in figure 1. The AIC of the best model was found to be around
5373.6.

4.2 Example 2: Synthetic data

We also explored the algorithms performance on a simple simulated dataset. We draw samples
from five independent uniform random variables 𝑋1, ⋯ , 𝑋5 ∼ 𝑈𝑛𝑖𝑓(0, 1). We then construct
the response variable as: 𝑦 = 3 × 𝑋1 + 2 × 𝑋2 + 𝜖, where 𝜖 is Gaussian noise. In this
straightforward example, the GA identified predictors 𝑋1 and 𝑋2 as the only relevant features
after 7 iterations using the default parametrization outlined above.

4.3 Comparison with Lasso

Finally, the performance of the algorithm was compared to a Lasso regression (using the
statsmodel package with regularization parameter 𝛼 = 0.1 on the baseball data). The Lasso
method can perform variable selection by setting some of the coefficients to zero, which will
“deselect” unimportant features.

4



The GA selected 10 predictors for the regression, meaning that 17 features where ignored.
Comparing this to the coefficient sizes of the Lasso shows that similar features are considered
relevant by the two models. In figure 2, the size of the horizontal bars indicates the importance
of each feature (corresponding to the respective coefficient weights).

5


	1. Introduction
	2. Programming approach
	2.1 Overall structure
	2.2 Default parameter values and initialization

	3. Testing
	4. Results
	4.1 Example 1: Baseball data
	4.2 Example 2: Synthetic data
	4.3 Comparison with Lasso

	5. Contributions

