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1 Introduction

Nowadays, investors often administer a portfolio consisting of several hundred securities [3].
Individual positions of the securities held by the portfolio managers can be very large and
make up a considerable portion of the average daily trading volume of the security. Due to
changing market conditions, institutional investors are forced to rebalance their portfolios
frequently, for example by selling unfavorable stocks or buying new picks. To preserve the
desired risk and reward profile of the portfolio, large orders across many di↵erent stocks
must be executed in a relatively short period of time. The costs of executing such orders
can be substantial and negatively a↵ect the performance of asset managers [21]. Conse-
quently, there is a great need for investors to control execution costs. Especially, the price
impact of trading contributes to the execution costs for sizeable orders. The price impact
describes the unfavorable e↵ect that executing an order has on the prices of the respective
securities [6]. For instance, a large purchasing order can move prices up and lead to higher
execution costs for the trade. As a result, it is common in practice to split large orders
into smaller packages that are executed over several short periods [7]. Hence, the challenge
that arises for the investors is to find the optimal split and trading strategy to minimize
incurring execution costs.

From a mathematical perspective, finding the optimal trading strategy represents a high-
dimensional stochastic control problem, since the stock price development involves un-
certainty. The traditional way of solving such problems is dynamic programming, where
the problem is broken down into simpler subproblems in a recursive manner. However,
the technique runs into di�culties for high-dimensional problems. This issue is called the
”curse of dimensionality” and describes the e↵ect that the run time of the dynamic pro-
gramming algorithm grows exponentially with the dimensionality of the problem [2]. One
possible approach to overcome this curse of dimensionality is to use deep learning and
approximate the solution with deep neural networks [13].

Deep learning is a subfield of machine learning and is based on the use of artificial neural
networks. In general, machine learning deals with algorithms and statistical models that
enable computer systems to perform specific tasks without being explicitly programmed, by
relying on pattern recognition. Artificial neural networks consist of several layers of inter-
connected artificial neurons, where each connection is associated with a weight. Complex
networks with multiple layers are called deep neural networks. A neural network can be
viewed as a function that is parameterized by the weights. Learning of the network can be
realized by modifying these weights based on training data in a way that a cost function is
minimized. After training, a network is able to generalize, make predictions and produce
reasonable outputs from a set of inputs that was not used during training. This infor-
mation processing capability of deep neural networks is called deep learning and makes it
possible to find good approximate solutions to complex and high-dimensional problems,
such as our stochastic control problem of minimizing execution costs for portfolios.
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In this thesis, a finite time horizon model for execution costs for portfolios is used. The
model is proposed in [3]. We implement and improve a deep learning approach developed
by [13] to approximate the optimal trading strategy and minimize execution costs of this
model. The aim is to approximate the optimal trading decisions at each time step by us-
ing artificial neural networks. These so-called subnetworks are then connected through the
model dynamics to form a very deep neural net and are trained simultaneously. Our numer-
ical results show that the deep neural network can learn the optimal split of the investors
order across multiple stocks over the available time periods very well and approximate
the optimal solution with high accuracy. Furthermore, it is worth mentioning that the
general approach to solve high-dimensional stochastic control problems with deep learning
has a wide range of applications other than minimizing execution cost, as the research
in [13] shows. For example, it can also be applied to optimize resource allocation with
many sources and demands or to dynamic game theory with many agents. Consequently,
we keep the discussion of the theory and the deep learning approximation algorithm for
optimal execution costs as general as possible, to facilitate the transfer of the basic ideas
and principles to other fields of research.

This thesis comprises a comprehensive overview of the deep learning approach for approx-
imating optimal execution costs for portfolios. It includes the necessary machine learning
theory, the model specifications for the execution costs and the programming realization:
First, the theoretical basis for understanding the deep learning methods used is established.
The basic concepts of artificial neural networks are described, including the network archi-
tecture, functionality and the training process. Subsequently, a short review of stochastic
control problems and the model of the execution costs for portfolios is presented. This en-
compasses a detailed description of how the control problem of execution costs is modelled
and an outline of the deep learning approximation approach that is used to solve it. In the
implementation part, the general structure of the code that implements the programming
of the model and the construction of the deep neural network is explained. Finally, the
results of the conducted numerical experiments are analyzed and the performance of the
neural network regarding its ability to approximate the optimal sequence of trades and
minimize the execution costs of a portfolio is discussed.

5



2 Theory of Artificial Neural Networks

2.1 Network Architecture

Artificial neural networks (ANNs) are computational systems that can learn to perform
various tasks by considering training data, generally without being explicitly programmed
with task specific rules. This places the research in ANNs in the broader field of machine
learning, which is in turn a discipline of artificial intelligence (AI) in computer science. We
count any technique that enables computers to mimic human behavior to AI [25]. In this
context, ANNs are inspired by the biological brain of humans. However, neurons in ANNs
interact by sending signals in the form of mathematical functions instead of electrical and
chemical signals. An artificial neural network consists of multiple layers that are built from
an arbitrary number of neurons. Usually, it contains an input layer, an output layer and
eventual so-called hidden layers in between. If an ANN has one or more of these hidden
layers, we speak of a deep neural network (DNN). Each connection between the neurons
of di↵erent layers is represented by a weight variable. A visualization of an example ANN
with two hidden layers and twenty neurons in total can be seen in Figure 1. The di↵erent
colors of the connections in the picture symbolize the di↵erent values of the associated
weight variables.

Figure 1: Illustration of a general artificial neural network with four layers and twenty
neurons in total

In this thesis, we focus on one of the simplest types of ANNs: feed-forward neural networks
(FFNNs). Feed-forward in this case means that information is only passed on forward
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through the layers in the same direction. This flow of signals is represented in Figure 1
by the arrows pointing towards the outputs. We limit our attention to fully-connected
FFNNs, meaning that each neuron of a layer in the net is connected to all neurons in the
subsequent layer.

Nonetheless, it is worth mentioning that there is a lot of applications for network types
that are not characterized by being fully-connected or passing information in one direction
only. For instance, convolutional neural networks (CNNs) are emulating the structure of
neurons in the visual cortex. In CNNs, neurons are only connected to a subset of nodes in
the neighboring layers, making them able to learn local features of the inputs [12]. Conse-
quently, these types of networks are well-suited for image recognition and video processing.
Another very popular network type is the class of recurrent neural networks (RNNs). In
RNNs, information does not flow in one direction only, which permits cycles in the net-
work that allow internal memory of what has already been calculated before. Dealing with
sequential information, such as sentences, is one of the best applications for RNNs. Hence,
they are used for handwriting and speech recognition.

In the next section, we will have a closer look at the artificial neurons in the networks.
In the human brain, biological neurons accumulate all incoming signals and pass on an
output of a fixed amplitude only if an activation threshold is reached. The neurons remain
inactive if this threshold is not reached. Artificial neurons were developed to act in a
similar manner, but can be modified to be a little more flexible.

2.1.1 Artificial Neurons

Adaptive artificial neurons are the structural building blocks of ANNs and are sometimes
called ”simple perceptrons” in literature [26]. In Figure 2, one can see the basic structure
of an artificial neuron. It consists of several inputs, a processing unit and an output.

The artificial neuron takes n inputs, denoted as x1, . . . , xn (see the blue nodes in Figure 2).
We condense these inputs in a vector x̂ 2 Rn. Each input connection to the processing unit
of the neuron is associated with a weight wi for i = 1, . . . , n. The weights are summarized
in a vector ŵ 2 Rn. In addition, there is an option for adding a bias. The bias acts like
an input that constantly signals the value 1 to the processing unit. However, it is also
connected to the processing unit via a variable weight b. Within the processing unit, the
weighted sum z of the inputs is calculated at first:

z = b+
nX

i=1

xiwi. (1)
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Figure 2: Illustration of an artificial neuron

In Figure 2, z is calculated in the green node labelled ⌃. Here, the role of the bias becomes
clear: It enables the shifting of this value, which will be processed by an activation function
in the next step. Consequently, the bias allows to shift this function to the left or right,
which may be critical for successful learning in the context of a complete neural network
(see Section 2.2). Notice that we can also represent z in a vector notation:

z = b+ x̂
T
ŵ. (2)

The next step in the processing unit of the artificial neuron is to apply a non-linear acti-
vation function � to the weighted sum z in order to receive an output value y:

y = �(b+
nX

i=1

xiwi) = �(b+ x̂
T
ŵ) = �(z). (3)

The application of the activation function is illustrated as an orange square in Figure 2
and the result is contained by the output node y, which is shown in red. This output
is the value that the neuron can pass on to another neuron in a subsequent layer of the
ANN. The exact mathematical formulation of this signal flow in an ANN is discussed in
the following section.
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2.1.2 Feed-forward Pass

As mentioned before, we focus on fully-connected feed-forward neural networks with one
or more hidden layers that are made up of artificial neurons with non-linear activation
functions. In this thesis, we may also refer to the neurons in a layer as nodes. This type
of network is sometimes called a ”Multilayer Perceptron (MLP)”. In the following, we
describe mathematically how the outputs of a complete ANN are derived from its inputs.
Unfortunately, dealing with the theory of neural networks always involves a lot of indices,
since there are several layers in a network, each containing many neurons and weights con-
necting them. For this reason, it is important to carefully handle this issue and precisely
define the notation used in order to not get confused.

We assume that the network has L 2 N layers in total with L � 3, where the first layer is
the input layer and the L-th layer is the output layer. For l = 1, . . . , L, let Nl 2 N denote
the number of nodes in the l-th layer. We label the accumulated incoming signal at the
i-th node in the l-th layer by zli for l > 1. This is just again the weighted sum of the inputs
to the node, which in this case are the outputs of all nodes in the previous layer and the
bias:

zli = bl�1
i +

Nl�1X

j=1

yl�1
j wl�1

ij . (4)

wl�1
ij represents the weight associated with the connection from the j-th node in the (l�1)-th

layer to the i-th node in the l-th layer. This order of indices will be useful for the matrix-
vector notation we introduce in (7). The bias to the i-th node in the l-th layer is denoted
by bl�1

i . In total, there is one bias variable for each neuron with incoming signals in the
network. The output of the i-th node in the l-th layer is called yli. The outputs of the
input layer are simply equal to the network’s inputs y1i = xi. In the last layer L, the output
layer, no activation function is applied in order to not restrict the range of output values
of the entire ANN. Thus, the outputs in the final layer become yLi = zLi . The outputs of
the nodes of the hidden layers, 1 < l < L, are calculated as

yli = �(bl�1
i +

Nl�1X

j=1

yl�1
j wl�1

ij ) = �(zli), i = 1, . . . , Nl, (5)

where � is the activation function. The activation function is assumed to be the same
for all nodes in the hidden layers. In a more general setting, it is also possible to apply
di↵erent activation functions, but will not be relevant in this thesis.

In total, we notice that after having computed all outputs of one layer we can calculate
the values of the subsequent layer and so on. The information of the inputs is thus passed
forward through the network, leading to the following recursive formulation of the output
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of node i of a hidden layer l:

yli = �

"
bl�1
i +

Nl�1X

j=1

�(bl�2
j +

Nl�2X

k=1

�(. . . �(b1m +
N1X

n=1

xnw
1
mn) . . .)w

l�2
jk )wl�1

ij

#
. (6)

This illustrates an important property of MLPs, which is that the only independent vari-
ables in the network are the inputs x1, . . . , xN1 . In summary, an artificial neural network
is despite its quite complex mathematical form just a mapping of real vectors x̂ 2 RN1 to
ŷL 2 RNL , the outputs of the net. Furthermore, the expression in (6) is a nested sum of
scaled activation functions. These functions can be shifted or the slope can be changed by
adjusting the parameters of the ANN, which are the weights and biases. This leads to an
enormous flexibility of the neural networks when being given the task to approximate a
functional dependency between inputs and outputs.

In fact, it was shown by Cybenko [8] that ”networks with one internal layer and an arbi-
trary continuous sigmoidal function can approximate continuous functions with arbitrary
precision providing that no constraints are placed on the number of nodes or the size of
the weights”. This statement is known as the universal approximation theorem. Later on,
it was proven that the theorem is not limited to sigmoidal functions only [17], but that
the potential of approximating any continuous function is based on the architecture of the
multilayer feed-forward neural nets. Some extensions to the popular ReLU function (see
section 2.1.3) have also been developed [14].

As before, we can simplify the signal processing procedure, the so-called feed-forward pass
of ANNs, by using a matrix-vector notation. We write ŷl 2 RNl for the column vector that
contains the outputs of layer l = 1, . . . , L. The biases are also represented as a column
vector b̂l 2 RNl+1 for l < L. The weights between layer l and l+1 are described by a weight
matrix W l 2 RNl+1⇥Nl . Using this notation, we can rewrite the values of the accumulated
incoming signals at layer l and summarize them in a column vector ẑl for l > 1 as

ẑl =

2

66664

zl1
...
...

zlNl

3

77775
=

2

66664

bl�1
1
...
...

bl�1
Nl

3

77775
+

2

66664

wl�1
11 wl�1

12 . . . wl�1
1Nl�1

wl�1
21 wl�1

22
. . .

...
...

. . . . . .
...

wl�1
Nl1

. . . . . . wl�1
NlNl�1

3

77775

2

66664

yl�1
1
...
...

yl�1
Nl�1

3

77775
= b̂l�1 +W l�1 ŷl�1. (7)

Again, the outputs of the hidden layers are

ŷl = �(b̂l�1 +W l�1 ŷl�1) = �(ẑl), l = 2, . . . , L� 1. (8)

Note that we use the vectorized form of the activation function �, where � is applied
componentwise. A closer look at di↵erent activation functions is taken in the next section.
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2.1.3 Activation Functions

A selection of common non-linear activation functions is presented in Figure 3. The non-
linearity is important to enable the potential of the network to approximate non-linear
functions too. Another desirable property of activation functions is continuous di↵erentia-
bility. When using gradient descent methods, this property can facilitate the optimization
of the loss function (see Section 2.2.2). Note that the ReLU function is not continuously
di↵erentiable. However, gradient based optimization can still be implemented with it, as
it is nearly linear [10]. The ReLU function is defined as follows:

ReLU(x) = max(0, x). (9)

In comparison, the step function, which is the function that mimics best the activation
signals in the human brain, is also not di↵erentiable at 0. Yet, its derivative for all other
values is 0, because it signals either 0 or 1, depending on whether the activation threshold
is reached (see Figure 3, upper right). Thus, gradient descent algorithms with this binary
function will not be able to decrease the loss function and the network cannot learn.
Consequently, the sigmoid function

sig(x) =
1

1 + e�x

and the hyperbolic tangent

tanh(x) =
ex � e�x

ex + e�x

were traditionally used as activation functions in practice [24], because they resemble the
binary step function and have bounded ranges, so that the signals cannot get too big.
The tanh function became a little more popular than the sigmoid function due to the fact
that it produces zero centered outputs, which is beneficial for the training procedure (see
Section 2.3.1).
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Figure 3: Graphs of four di↵erent non-linear activation functions

Unfortunately, both the sigmoid function and the hyperbolic tangent can su↵er from the
vanishing gradient problem when training the ANN (see Section 2.2.3). As a solution,
ReLU is nowadays the most common activation function [24], although it is unbounded
and signals can get arbitrarily large. This is because of the non-saturation of its gradients
and its resulting ability to reduce the vanishing gradient problem. Moreover, it is obviously
less expensive to compute, because it avoids divisions and exponentials. We conclude that
the choice of activation function is very important for the overall ability of the ANNs to
learn and can greatly a↵ect the speed of training. The training of ANNs is discussed in
the following section.

2.2 Training of Neural Networks

Training an ANN requires training data. The training data set usually consists of input
data and target values that are associated with the input data, for instance when the
network should solve a classification problem. Yet, there exist applications of neural net-
works that are trained on data sets without target values. We denote the training set
as Xtrain = {1x̂, . . . ,Dx̂} with D samples and do not consider possible target values. In
machine learning, the training data is used to fit a model. In the case of deep learning, this
model is a DNN. So the network ’learns’ based on the data of Xtrain, which means that the
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parameters of the net, the weights and biases, are adjusted in a way that the performance
of the DNN increases. In order to objectively measure the final performance and accuracy
of the model, there exists a test data set that serves as unbiased evaluation data. The test
data set ideally consists of ’unseen’ data, meaning that it was not used during training.
Besides the training and the test data, the use of an additional validation set is common in
practice. It is also used to give an unbiased evaluation of the model. However, the model
is evaluated on the validation set continuously during training. This is done to carefully
tune the model’s hyperparameters, which will be discussed later, and should help detect
overfitting in an early stage.

2.2.1 Quantifying Loss

An artificial neural network can learn by adjusting its weights and biases, as mentioned
before. This adjustment is not done arbitrarily, but in a systematic manner. For this
purpose, we introduce a loss function L that quantifies the loss incurred from the outputs
of the network. Thus, the loss function should allow a measurement of the performance
of the network, whereby improvements of the loss value should indicate a better model
performance. The loss is calculated based on the outputs ŷL of the ANN. Recall that
these outputs are generated by passing on the inputs x̂ through the complete network
and applying a series of matrix-vector multiplications, vector additions, as well as the
activation function (see for example (8)). Hence, the outputs ŷL are dependent on the
inputs and parameters of the ANN. Consequently, we can formulate the loss for a single
training sample as a function

L : RNL ! R, ŷL 7! L(ŷL)

L(ŷL) = L(ŷL(ix̂,W, b)),
(10)

where ix̂ 2 RN1 is the i-th sample of the training set Xtrain, W is the collection of all
weights in the network W = {W 1, . . . ,WL�1} and b are all biases b = {b̂1, . . . , b̂L�1}.
Sometimes, the loss function is also referred to as cost function and can additionally depend
on possible target values. With this loss function for individual training samples, we define
the empirical loss L as the average loss over the entire training data set:

L(W, b) =
1

D

DX

d=1

L(ŷL(dx̂,W, b)). (11)

Notice that we do not see the empirical loss function L as a function of the inputs of the
training set Xtrain, as we expect the entire training set to be fixed. It rather is a function
with a parameter space consisting only of the weights and biases, because these are the
parameters that we can modify, while input data and possible target values are not some-
thing that the ANN learns. From now on, we may call the empirical loss L simply loss
while making sure that it is evident from the context, whether the loss of a single training
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example L or over the entire data set L is meant.

Overall, the aim of training is to adjust the weights and biases in the network in a way that
the empirical loss function is minimized. Therefore, we can interpret the training process
as solving an optimization problem. The loss function represents the objective function
and acts as a measure to evaluate a set of parameters as a candidate solution in the context
of this optimization problem. To find the optimal weights W ⇤ and biases b⇤ that achieve
the lowest loss, we formulate the loss optimization problem:

(W ⇤, b⇤) = argmin
(W,b)

L(W, b) = argmin
(W,b)

1

D

DX

d=1

L(ŷL(dx̂,W, b)). (12)

In the case of a classification problem, minimizing the loss function could lead for example
to the outputs of the ANN being close to the target values in the training set, when feeding
it with the associated input training data. The network can then classify the inputs in
di↵erent categories or make certain predictions. However, we often encounter the problem
of overfitting in practice, meaning that the ANN is trained too specifically on the training
set and can perform poorly on ’unseen’ test data. Preventing overfitting is therefore an
important task in machine learning. The techniques commonly used to find the solution
of the optimization problem are presented in the next section.

2.2.2 Optimizing the Loss Function

The optimization problem in (12) can be solved or approximated in several ways. The
most common approach in practice however is to use a version of a gradient descent algo-
rithm, due to its computational advantages over other optimization methods. For instance,
finding the optimal solution analytically might not be possible or could be very di�cult,
because of the extremely high dimensionality of the neural network’s parameter space. In
the following section, the main principles, benefits and disadvantages of gradient descent
methods are presented, as well as some extensions to the basic algorithm. Nevertheless,
for a more detailed discussion of the topic and the algorithm for computing the gradients,
see for example [4], [27] and [28].

The idea of the gradient decent algorithm is to take small steps towards a descent direction
until a minimum is reached (see Algorithm 1). Hence, the method is an iterative optimiza-
tion algorithm for minimization. It evaluates the objective function, in our case the loss
function, at a random starting point. Then, a step towards the direction of the steepest
descent of the function, which is the negative gradient, is taken. This procedure is repeated
until the gradient is zero (or small enough to satisfy a stopping criterion) and a stationary
point, ideally a global minimum, is reached. Here, some of the biggest challenges of descent
algorithms already come to light. First, instead of converging to the global minimum, the
algorithm may get stuck in a local minimum or saddle point. Moreover, the algorithm is
sensitive to the starting point, which in our case is the initialization of the weights and bi-
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ases. Depending on the randomly selected starting parameters, the algorithm may or may
not converge. Finally, the choice of the step size can play a major role for the convergence
and speed of the algorithm and thus has to be made carefully.

For clarity, we denote the parameters W and b of the network as ✓ = (W, b). One can think
of ✓ as a column vector listing all of the parameters. In its most basic form, the gradient
descent algorithm for neural networks to find a minimum then reduces to:

Algorithm 1 : Regular Gradient Descent

Require: Objective function L(✓) with parameters ✓
Require: Step size ⌘ > 0

1. Initialize parameters ✓ randomly

2. While ✓ not converged do:

2.1 Compute gradient: r✓L(✓)
2.2 Update parameters: ✓  ✓ � ⌘ ·r✓L(✓)

end while

3. Return parameters ✓

where ⌘ is called the learning rate, representing the step size in the descent algorithm. The
gradient of the loss function r✓L(✓) is a column vector containing all partial derivatives of
the loss function with respect to the parameters @L

@✓i
, for i = 1, . . . ,

PL
l=2(Nl�1 + 1)Nl. The

total number of parameters is just the number of all biases and weights in the network,
meaning that the gradient contains all partial derivatives @L

@wij
and @L

@bi
.

The regular gradient descent algorithm has a couple of disadvantages. Therefore, it is not
used in practice very often. Yet, the basic idea of reducing the loss function step by step
by moving towards a descent direction has proven to be useful. The main drawbacks of
implementing regular gradient descent are that it can run into memory issues and be very
slow. For each update in the algorithm, the gradient of the loss function for the whole
training data set has to be calculated. If the training set is large, it might not fit into the
computer memory. Consequently, it makes sense to look for alternatives to this algorithm
that tackle some of the above mentioned problems.

One variant of Algorithm 1 is stochastic gradient descent (SGD). In contrast, the SGD
algorithm performs a parameter update for each individual training example ix̂. The true
gradient of L(✓) is approximated by a gradient at a randomly selected single training
example. The update in 2.2 of Algorithm 1 then becomes

✓  ✓ � ⌘ ·r✓L(ŷ
L(ix̂, ✓)).
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This method is usually much faster, due to the frequent updates [27]. Additionally, the
noise in the approximation of the true gradient can help the algorithm escape local minima.
On the downside, this fluctuation can also lead the algorithm in unfavorable directions.
Lastly, the SGD loses the advantage of vectorized operations, as it only deals with a single
training sample at a time.

A compromise between computing the true gradient over all training data and the gradient
for each individual training sample is o↵ered by the so-called mini-batch gradient descent
method, which can perform significantly better than regular gradient descent or SGD. The
training set Xtrain with D data points is divided randomly into equally sized mini-batches,
which are used to approximate the gradient of the loss function for the parameter update.
If the batch size is chosen to be K, assuming that D is divisible by K, then there will be
D
K mini-batches, which we can call Bi = {1x̂i, . . . ,K x̂i} for i = 1, . . . , D

K . As the batches
are created randomly from the training set, we have kx̂i 2 Xtrain for all k  K. Moreover,
we state that the mini-batches should form a disjoint union of the training set:

Xtrain = B1 [̇ . . . [̇BD
K
.

From the fact that the loss function L can be written as an average over all training data
(see (11)) and by the linearity of the gradient, we can conclude that the gradient of the
loss function can also be written as an average:

r✓L(✓) = r✓

 
1

D

DX

d=1

L(ŷL(dx̂, ✓))

!
=

1

D

DX

d=1

r✓L(ŷ
L(dx̂, ✓)). (13)

Hence, we can also calculate the gradient over some mini-batch data by averaging the
gradients of each individual training sample in the batch. With this in mind, we formulate
the following algorithm:
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Algorithm 2 : Mini-Batch Gradient Descent

Require: Loss function L for individual training examples
Require: Step size ⌘ > 0

1. Initialize parameters ✓ randomly

2. While ✓ not converged do:

2.1 Randomly create D
K mini-batches Bi = {1x̂i, . . . ,K x̂i} of size K from Xtrain

2.2 For i = 1, . . . , D
K do:

2.2.1 Define average loss function over mini-batch data: Li(✓) :=
1
K

PK
k=1 L(ŷ

L(kx̂i, ✓)

2.2.2 Compute gradient: r✓Li(✓) =
1
K

PK
k=1r✓L(ŷL(kx̂i, ✓))

2.2.3 Update parameters: ✓  ✓ � ⌘ ·r✓Li(✓)

end while

3. Return parameters ✓

As the algorithm does not process each training sample separately, it can make use of
vectorized operations and at the same time does not have to memorize all of the training
data at once. Furthermore, this method may result in a smoother convergence compared
to SGD, because the computed gradient for each parameter update is averaged over K
training examples. This means that the directions taken are less noisy, however, it can still
help escape local minima. These are some of the reasons why using mini-batches is very
common when implementing a form of gradient descent in the field of deep learning [27].

Nevertheless, the algorithm still has some disadvantages. The batch-size for example rep-
resents an extra hyperparameter that has to be tuned during training (see 4.3.2). Besides,
there is no guarantee for convergence and choosing an appropriate learning rate can be
di�cult, a challenge that is discussed in Section 2.3.2.

2.2.3 The Vanishing Gradient Problem

One obstacle to the e↵ective training of DNNs with gradient based optimization methods
is the vanishing gradient problem [16]. As the name suggests, it deals with the e↵ect that
partial derivatives of the loss function with respect to the weights can get smaller and
smaller for the early layers in a network. The more layers there are in a network, the worse
this e↵ect can be. The vanishing gradient problem results from the fact that calculating
the gradients via back-propagation requires a repeated application of the chain rule, lead-
ing to the multiplication of the derivatives. If these are small in value, i.e. < 1, then we
have an exponential decrease of the gradient. This is an undesirable phenomenon, as we
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learned that small gradients lead to smaller updates in the gradient descent optimization
algorithms and thus making the network very hard to train. The slow learning in the early
layers can also lead to a poor accuracy of the whole network, because the initial layers are
often crucial to recognize basic patterns in the input data [30].

Another factor responsible for this problem is the choice of the activation function [9].
Looking for example at the sigmoid function in Figure 3, we see that large changes in the
incoming signals might not have a large e↵ect on the output of the function if the signals are
large in absolute value. This means that the derivative of the sigmoid activation function
is very small at its tails. We can also see this by looking at

sig(x) =
1

1 + e�x

sig0(x) = sig(x)| {z }
2(0,1)

(1� sig(x))| {z }
2(0,1)

=
e�x

(1 + e�x)2
.

Notice that the derivative of the sigmoid function is always less than one, which can cause
the exponential decrease of the gradients described above. A possible solution that works
e↵ectively in practice is to use the ReLU activation function, ReLU(x) = max(0, x),
because it does not have the problem of derivatives being too small for signals larger than
zero:

ReLU 0(x) =

(
0 if x < 0

1 if x > 0.

In addition, the derivative of the ReLU function is very easy to compute. Nevertheless,
using ReLU also has some disadvantages. For example, neurons with the ReLU activation
function that receive a negative signal can die out due to the fact that they will only
output 0 and the derivative will also become 0. This can prevent the neurons from further
learning and is called the dying ReLU problem [23]. Besides the choice of the activation
function, it was found that the initialization of the weights can play a major role in tackling
the vanishing gradient problem [9], as well as the use of batch normalization [18]. This
technique is discussed in the following section.
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2.3 Tuning of Neural Networks

2.3.1 Batch Normalization

Batch normalization is a technique developed to address the vanishing gradient problem
(see Section 2.2.3) and speed up the training process [18]. Additionally, it deals with the
general problem that the distribution of each layer’s inputs changes during training, as the
weights in the previous layers are adjusted. The changing input distributions require the
layers to continuously adapt, slowing down training and requiring a lower learning rate, as
well as a careful parameter initialization. To avoid these problems, batch normalization
can be adopted just before applying the activation function in each layer of a DNN.

Implementing batch normalization means making normalization a part of the model ar-
chitecture. It is performed for each training batch. Basically, the technique zero-centers
the inputs for each layer and normalizes them, before scaling and shifting the results again
using two new trainable parameters. Essentially, these two parameters, which we call the
scaling parameter � and the shifting parameter �, allow the model to learn the optimal
scale and mean of each layer’s inputs. In order to be able to perform the centering and
normalization, the mean and standard deviation of the inputs of the entire training set
have to be estimated. This is done by computing the mean and standard deviation of the
current training batch, giving the technique its name.

Let Bi be a training batch with K input samples. Since the normalization transformation
is applied at each layer independently, we focus on the accumulated incoming signals at
one particular layer l. Hence, we have K values of these signals in the batch: 1ẑli, . . . ,K ẑ

l
i.

For clarity, we will drop the indices for the layer and the batch in this section. Then, the
algorithm for the batch normalization transformation is:

Algorithm 3 : Batch Normalization

Require: Accumulated incoming signals 1ẑ, . . . ,K ẑ at layer l of batch Bi

Require: Scaling parameter � and shifting parameter �
Require: Smoothing term ✏ > 0

1. Calculate batch mean: µb =
1
K

PK
k=1 kẑ

2. Calculate batch variance: �2
b = 1

K

PK
k=1(kẑ � µb)2

3. For k = 1, . . . , K do:

3.1 Normalize the signals: kẑ  k ẑ�µbp
�2
b+✏

3.2 Scale and shift: kẑ  � kẑ + �

4. Return transformed signals kẑ
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The distribution of values of the normalized signals in step 3.1 in Algorithm 3 for any
sample kẑ has an expected value of 0 and a variance of 1, as long as the samples of the
batch are drawn from the same distribution and if we neglect ✏. We use ✏ as a so-called
smoothing term and choose it to be a very small number, e.g. 10�10, to avoid division by
zero.

Notice that when using batch normalization, we do not need a bias term anymore, such as
described in Section 2.1.1, because the mean subtraction in the batch normalization would
eliminate it. The shifting parameter � takes over the role of the bias in this case. Although
batch normalization is found to significantly reduce the vanishing gradients problem, allow
higher learning rates and make the networks less sensitive to weight initialization, it adds
complexity to the model and can lead to longer running times when making predictions,
due to the extra computations in each layer.

2.3.2 Learning Rate Scheduling

Previously, we have found out that the choice of the learning rate is important for the
speed and convergence of the gradient descent algorithm (see Section 2.2.2). If the learn-
ing rate is set too high, the training algorithm may diverge and the cost function cannot be
minimized. Another possibility is that the model learns quickly in the beginning, but does
not converge to an optimal solution, because the algorithm jumps around the optimum.
On the other hand, if the learning rate is set too low, the optimal solution is reached very
slowly [12]. Consequently, if a constant learning rate is used, it has to be tuned carefully
to find a good balance.

Learning rate scheduling o↵ers an alternative to using a constant rate. The idea is to
decay the learning rate during training such that the optimization algorithm can make
fast progress in the beginning and gets more accurate towards the end. For instance, in
a version called ’performance scheduling’ one starts with a high learning rate and reduces
it, when the loss function stops decreasing. With this technique, a good solution can be
found faster than with constant rates. There are many di↵erent learning rate reduction
strategies. An easier implementation of learning rate scheduling is to use a ’predetermined
piecewise constant learning rate’. The lowering of the learning rate is fixed in advance
and performed after a predetermined number of iterations. Although this might work very
well, it also requires fine tuning. In addition to the learning rate decay, it was found that
increasing the batch size can also help obtain a better learning curve [29].
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2.3.3 Training Acceleration with Adam Optimizer

The final measure to ensure an even faster training process that we discuss is using an
advanced gradient descent optimization algorithm, such as the Adam algorithm. Similar
to regular gradient descent, SGD and mini-batch gradient descent, the algorithm aims to
find a solution to problem (12) and only uses first-order partial derivatives. Although the
mini-batch gradient descent presented in Algorithm 2 is good for understanding the use of
training batches and the principles of the learning process of ANNs, the Adam algorithm is
shown to perform much better for deep learning applications in practice [20]. Advantages
of the Adam algorithm include its computational e�ciency and its little memory require-
ments.

The Adam method keeps track of an exponentially decaying average of past gradients,
which is known from the so-called momentum optimizer, and also of an exponentially de-
caying average of past squared gradients (see m and v in steps 2.2.4 and 2.2.5 of Algorithm
4). The idea is to use the gradient as acceleration, leading to the ability to take larger
steps towards relevant directions with steep slopes and be able to escape plateaus [27]. As
a result, it requires less tuning of the learning rate hyperparameter ⌘.

The name Adam is derived from adaptive moment estimation, as Adam uses adaptive
estimates of lower-order moments. For a compact presentation of the Adam algorithm, we
first need to define the entrywise product � and entrywise division ↵ of vectors: For two
real matrices or vectors A and B of the same dimension n⇥m, the entrywise product A�B
is a matrix or vector of the same dimension with elements given by (A �B)ij = (A)ij(B)ij,
while the entrywise division A↵B is a matrix or vector of the same dimension with elements
given by (A↵B)ij = (A)ij/(B)ij. Adding a constant to a vector or the application of the
square root are also componentwise. Then, the Adam algorithm with mini-batches is:
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Algorithm 4 : Adam with Mini-batches

Require: Loss function L for individual training examples
Require: Step size ⌘ > 0
Require: Exponential decay rates for the moment estimates: ↵1,↵2 2 [0, 1)
Require: Smoothing term ✏ > 0

1. Initialization

1.1 Initialize parameters ✓ randomly

1.2 Initialize first and second moment vectors: m 0, v  0

1.3 Initialize iteration number: t 0

2. While ✓ not converged do:

2.1 Randomly create D
K mini-batches Bi = {1x̂i, . . . ,K x̂i} of size K from Xtrain

2.2 For i = 1, . . . , D
K do:

2.2.1 t t+ 1

2.2.2 Define average loss function over mini-batch data: Li(✓) :=
1
K

PK
k=1 L(ŷ

L(kx̂i, ✓)

2.2.3 Compute gradient: r✓Li(✓) =
1
K

PK
k=1r✓L(ŷL(kx̂i, ✓))

2.2.4 Update biased mean estimate: m ↵1 ·m+ (1� ↵1) ·r✓Li(✓)

2.2.5 Update biased variance estimate: v  ↵2 · v + (1� ↵2) ·r✓Li(✓) � r✓L(✓)
2.2.6 Compute bias-corrected mean estimate: m̂ 1

1�↵t
1
·m

2.2.7 Compute bias-corrected uncentered variance estimate: v̂  1
1�↵t

2
· v

2.2.8 Update parameters: ✓  ✓ � ⌘ · m̂↵
p
v̂ + ✏

end while

3. Return parameters ✓

Observe that the hyperparameters ↵1 and ↵2 control the exponential decay rates of the
weighted moving averages m and v. These moving averages estimate the mean and the
uncentered variance of the gradient. However, the moment estimates are found to be biased
towards zero in the beginning of the iteration and especially when using small decay rates
[20]. This happens due to the fact that they are initialized with 0 (as a vector). Hence,
a computation of bias-corrected estimates is introduced in steps 2.2.6 and 2.2.7. This will
boost m and v at the start, avoiding this problem.
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3 Optimal Execution Costs for Portfolios

In this section, we introduce a model for execution cost for portfolios and develop a deep
learning approach to solve the problem of minimizing these costs. The execution costs are
the costs that are associated with the execution of investment strategies and are composed
of several components. They include explicit transaction costs, such as commissions and
bid/ask spreads, as well as costs that are not directly measurable, such as opportunity costs
of waiting and the price impact from trading [21]. Especially for institutional investors and
portfolio managers with large positions, execution costs can have a substantial negative im-
pact on the performance of investments and consequently need to be controlled carefully [3].
Using the execution cost model described in Section 3.2.1, this requires solving a stochas-
tic control problem, which we will approach with a deep learning approximation algorithm.

In our cost model, we capture the price impact from trading in a stock on itself and on other
stocks in the portfolio. The price impact describes the unfavorable e↵ect that executing
a buying or selling order has on the price of the respective security. For instance, a large
purchasing order can move prices up and lead to higher execution costs. Moreover, the
bigger the order, the stronger the price impact, which is also called market impact. As a
result, it is common in practice to split large orders into smaller packages that are executed
over several time periods [7]. We aim to find an optimal trading strategy that splits and
executes orders across several stocks, using artificial intelligence.

3.1 Stochastic Control Problems

Before specifying the concrete model for the execution costs for portfolios, we introduce
the main principles of stochastic control theory. In general, optimal control theory deals
with optimizing a sequence of actions over a period of time to attain some future goal, for
instance the minimization of a sum of path costs [19]. The optimal sequence of actions
is dependent on a dynamic system. In stochastic control problems, the evolution of this
system is not fully deterministic, but also driven by random noise that a↵ects the state vari-
ables. We consider a stochastic control problem in discrete time within a finite horizon T
on a general probability space (⌦,F , P ). In addition, a filtration F0 ⇢ F1 ⇢ . . . ⇢ FT = F
is required. For convenience, we adopt the convention throughout this thesis that any by
t indexed variable is Ft-measurable. Important variables of the stochastic control problem
are written in bold.

Next, we introduce the state variable st and the control variable at. The state variable
describes the state of the dynamic system at time t. We let st 2 St ⇢ Rd, where St

is the set of possible states. The n-dimensional control variable at 2 Rn represents the
action that is decided at time t and will influence the state variable at the next point in
time. We use both the terms controls and actions interchangeably for these variables at.
Moreover, it is assumed that the control variable at only depends on the current state st,
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meaning that the state variable fully describes the dynamic system. Hence, we define at

to be an element of the set of admissible actions at 2 At = {at(st) : St ! Rn}. Similar
to the execution cost model that will be presented in Section 3.2.1, we do not consider
state-dependent constraints on the controls.

Due to the fact that sT is the final state, we only have controls at times t = 0, 1, . . . , T �1.
The evolution of the system can now be described as a stochastic model:

st+1 = st + gt(st,at) + ⇠t+1, t = 0, 1, . . . , T � 1. (14)

In this model, gt is the deterministic drift, which depends only on the current state and
the action taken: gt(st,at) : St ⇥ Rn ! Rd. The deterministic drift is noiseless and can
be rewritten as gt(st,at(st)). However, as we are dealing with a stochastic model, an
Ft+1-measurable random variable ⇠t+1 2 Rd is added. This random variable represents the
uncertainty in the model dynamics and comprises all noisy information arriving during the
time period between t and t+ 1.

As mentioned before, the overall goal is to optimize an objective function by selecting the
optimal control variables. For example, one can think of maximizing an expected reward
or minimizing expected costs. In this thesis, we consider a minimization problem. We
denote the intermediate cost that is associated with taking action at at time t in state st
as ct(st,at). Additionally, we define the cumulative cost as

Ct =
tX

⌧=0

c⌧ (s⌧ ,a⌧ ), t = 0, 1, . . . , T � 1. (15)

For simplicity, we do not take into account a final cost that is associated with ending up
in state sT at time T and is not directly related to a decision made. Consequently, CT�1

stands for the total cost of the problem. Note that the last state sT can be ignored, since
the calculation of CT�1 does not consider it. Overall, the stochastic control problem can
now be formulated as

min
at2At

t=0,...,T�1

EP [CT�1 | s0] = min
at2At

t=0,...,T�1

EP [
T�1X

t=0

ct(st,at(st)) | s0], (16)

which means that the objective is to find the sequence of actions that minimizes the ex-
pected total cost, given the initial state s0. Traditionally, these problems are solved with
dynamic programming [5]. However, we focus on the presentation of a deep learning ap-
proach to approximate the optimal solution, avoiding the need for a dynamic programming
algorithm.
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3.2 Mathematical Formulation of Execution Costs

3.2.1 The Basic Model

In this section, the mathematical model for the execution costs for portfolios is defined.
To bring into focus the deep learning approach for solving stochastic control problems,
the model is prevented from growing too complicated. We consider a finite time horizon
T and a portfolio that consists of n stocks. The fixed blocks of shares of the n stocks of
the portfolio to be purchased within T periods are denoted by ā = (ā1, ā2, . . . , ān)

T 2 Nn.
This represents a purchasing order that an investor has to fulfill. Notice that without loss
of generality we limit the scope of this model to a buying program, meaning that only
the acquisition of a certain number of stocks within the determined portfolio is desired. A
selling order or a combination of buying and selling could be implemented easily by using
appropriate signs. So, after T periods, āi is the number of shares that must have been
bought of stock i of the portfolio.

We label the number of shares of each stock acquired in period t by at = (a1t, . . . , ant)
T 2 Rn

for t = 0, . . . , T�1. These are the control variables in the stochastic control problem. Note
that for simplification reasons, we do not require these variables to be natural numbers,
although in practice it might not be possible to buy fractions of a share. The execution
prices of these stocks at the time of purchase are contained in pt = (p1t, . . . , pnt)

T 2 Rn.
The execution price represents the amount of money that an investor actually has to pay
for receiving the stocks (see Section 3.2.2). The objective of the investor now is to minimize
the expected total cost of trading in the n stocks to complete the order ā in time T . We
state this minimization problem of the investor as

min
{at}T�1

t=0

EP [
T�1X

t=0

p
T

tat] (17)

subject to:

T�1X

t=0

at = ā. (18)

For the sake of clarity, we omit the dependency on the initial state in the formulation of
the stochastic control problem above. In principle, the aim is to find the optimal sequence
of trades as a function of the state variables st (which we will define in the next section)
that minimizes the expected execution costs of the order ā.

In this model, we do not impose additional constraints, such as a no-sales condition at � 0
or other institutional restrictions and tax considerations. Hence, we allow the sale of shares
within the time horizon of the order, although we are considering a buying program. Yet,
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the addition of constraints that are relevant to portfolio managers in practice could be
incorporated in the approach without much e↵ort by adding penalty terms [13]. Leaving
out the constraints in this thesis should consequently not reduce the significance of the
research, but rather help to keep a clear structure and prevent over-engineering.

In the following, we introduce the remaining shares to be bought at time t as ut =
(u1t, . . . , unt)

T
. This ut will be part of the state variables st. So ut contains the part

of the order that is still outstanding at time t, which means that u0 = ā and uT = 0, in
order to ensure that all ā shares are purchased within time T . The development of the
outstanding order over time obviously depends on the trades executed by the investor and
can therefore be viewed as part of the deterministic drift of the system. We can summarize
the development of ut as

u0 = ā

ut+1 = ut � at, t = 0, . . . , T � 2

uT = 0.

(19)

As presented in equation (14), there are more specifications required to fully describe the
evolution of the system of a stochastic control problem, such as the random noise. In
our model, this noise is incorporated in the price dynamics, as well as in the evolution of
other state variables, which we will call xt. The price dynamics should capture the price
impact of trading and the influence on the execution price by changing market conditions
or information. Here, we consider a linear percentage price impact model as proposed in
[3], which is discussed in the next section.

3.2.2 Linear Percentage Price Impact

The linear percentage price impact model is used to describe the price dynamics of the
execution prices pt, which are assumed to be the sum of two components for t = 0, . . . , T�1:

pt = p̃t + �t. (20)

Here, p̃t represents the ”no-impact” price and �t stands for the price impact. The no-
impact price is the price of the stocks that would prevail on a financial market that is free
of any market impacts. This means that p̃t is independent of the trade size at. On the
contrary, the price impact refers to the price change of the stocks caused by the investors
incoming order and other market impacts [6]. The influence of these e↵ects on the execu-
tion price is represented by �t.

To ensure non-negative no-impact prices and for simplicity, p̃t is modelled as multivariate
geometric Brownian motion [3]:

p̃t = exp(Zt)p̃t�1, (21)
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where Zt = diag[zt] and zt is a normal random vector with mean µz and covariance matrix
⌃z. The operator exp(·) represents the matrix exponential, which reduces to the element-
wise application of the exponential function to the diagonal entries in the case of a diagonal
matrix.

The price impact is given by

�t = P̃t(AP̃tat +Bxt), (22)

where P̃t = diag[p̃t], A 2 Rn⇥n is positive definite, B 2 Rn⇥m and xt 2 Rm. We let m 2 N
be the number of sources of information that a↵ect the execution prices of the stocks. The
vector that represents this information and the changing market conditions is labelled xt.
For instance, (xt)i, i  m, might be the return on a specific stock market index at time t,
which is a common component in the price of stocks. The dynamics of these other state
variables are described below in (23).

Note that we use A to measure the price impact’s sensitivity to the current trade size,
while B is a measure for the sensitivity to the market conditions and information in xt.
The choice of A reveals that we are not only taking into account the price impact of
trading in stock i on pit, which is determined by Aii, but also cross market impact e↵ects
between di↵erent stocks if A is non-diagonal. This lets us model instances, where stocks
are close substitutes and purchasing a large number of shares in one stock can not only
drive the price in this stock up, but also induce similar price movements in other stocks of
the portfolio. Or, in case of a negative correlation, the execution price of another stock can
be reduced, revealing a diversification e↵ect. Specifically, we observe that Aij measures
the sensitivity of the price impact of trading in stock j on pit, while Aji measures the
influence of trading in stock i on pjt. This also highlights the relevance of the research of
[3], which shows that it is much more accurate to incorporate cross-stock e↵ects compared
to minimizing the expected cost of executing trades in each security in isolation. Notice
that the functionality for B is similar. As an example, Bik measures the sensitivity of the
price impact on pit to the k-th market condition.

The linear percentage price impact model has a couple of advantages that we briefly want
to mention. The separation of the execution price into a no-impact price and a price
impact component shown in (20) leads to the fact that price impact e↵ects of trades are
only temporary, instead of being permanently incorporated into the price. Moreover, the
percentage price impact increases linearly with the trade size, which also seems realistic [22].

Lastly, we define the law of motion for the process of the information state variables xt as

xt = Cxt�1 + �t, (23)

where we let C 2 Rm⇥m and �t be a vector white noise with mean 0 and covariance matrix
⌃�. Thus, xt is a VAR(1), a vector autoregressive process with one lag. This means that
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the state variables in xt depend linearly on their own values of the previous period and on
the stochastic noise introduced by �t. Modelling xt as a VAR(1) allows the application of
varying degrees of predictability in the market conditions or of available information and
is fairly easy to implement. To ensure the stationarity of xt, we must have |C�i| < 1 for
all eigenvalues C�1, . . . , C�m of C [3].

Altogether, we let the state variables of the stochastic control problem of optimal execution
costs for portfolios be

st =

2

64
p̃t

xt

ut

3

75 . (24)

3.2.3 Calculation of Costs

To implement a deep learning approximation algorithm for the stochastic control problem
in (17), a detailed specification of the composition of costs needs to be included in the
problem statement. Therefore, we first define the intermediate execution cost ct(st,at)
that is associated with trading at shares of the stocks in the portfolio at time t in state st:

ct(st,at) = p
T

tat = (p̃t + �t)
T
at. (25)

The intermediate cost represents the amount an investor actually has to pay for executing
the trades at at execution prices pt, including market impact e↵ects. Subsequently, the
cumulative cost Ct can be defined as

C0 = c0
Ct+1 = Ct + ct+1 t = 0, . . . , T � 2.

(26)

The total cost CT�1 is the cumulative cost after all trades have been executed and the
order ā is fulfilled at time T . Hence, we can restate the stochastic control problem from
(17) as

min
{at}T�1

t=0

EP [CT�1] = min
{at}T�1

t=0

EP [
T�1X

t=0

ct(st,at)]. (27)

Notice the similarity to (16) and that the condition of (18) has to be met as well. An
analytical solution to this problem can be found by using dynamic programming. For the
analytical optimal cost and the corresponding expression of the optimal trading strategy,
see [3]. Later, we use this analytical optimal solution to benchmark the results of our
numerical experiments.

28



Due to the fact that the total execution cost CT�1 dependents heavily on the no-impact
share prices of the stocks to be purchased and the order size, we introduce another measure
for costs that makes the transactions more comparable for di↵erent portfolio structures.
We define the total execution costs in cents per share above the no-impact cost p̃

T

0ā as

C$ = 100
CT�1 �

Pn
i=1 p̃i0āiPn

i=1 āi
. (28)

It is calculated by comparing the total execution cost with the cost that would arise if the
complete order would be executed at t = 0 with no market impacts and other transaction
costs and distributing this di↵erence over the number of shares traded in total to fulfill
the order. Finally, the approach for approximating the solution of this stochastic control
problem with a deep neural network is presented in the next section.

3.3 Deep Learning Approximation Approach

As stated before, the challenge that arises is to find the optimal actions in each period in
order to minimize the expected total cost. Our approach is to approximate this optimal
trading strategy for each time period t using a feed-forward neural network SNt [13]. As
the choice of the action at only depends on the current state st for each t = 0, 1, . . . , T �
1, the networks will take the current state variables as inputs. The aim is to find the
functional dependencies between state variables and controls with the networks {SNt}T�2

t=0

by optimizing their parameters ✓t such that

at(st) ⇡ at(st|✓t).

Note that we only have T � 1 subnetworks SNt, for each t = 0, . . . , T � 2. This results from
the fact that in the last period, between time T �1 and T , the trades that are executed are
predetermined by the remaining order: aT�1 = uT�1. Consequently, there is no need for a
neural network to approximate the control variable at t = T � 1. Hence, the optimization
problem we want to solve becomes

min
{✓t}T�2

t=0

EP [
T�2X

t=0

ct(st,at(st|✓t)) + cT�1(sT�1,uT�1)]. (29)

To create a deep neural network that outputs the total execution costs, we stack these sub-
networks SNt together through the specified model dynamics (see Figure 4). This overall
network is labelled DNN. The subnetworks can then be trained simultaneously by feeding
the deep network with an initial state and samples of the stochastic process {⇠t}T�1

t=1 that
includes all noise incorporated in the evolution of p̃t and xt. During this process, the DNN
learns to trade in a way that the total execution costs are minimized.

The exact architecture of the DNN is presented in Figure 4. The state variables st are
visualized as blue circles and fed into the first hidden layer of the appropriate subnetwork.
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Figure 4: Illustration of the architecture of the deep neural network DNN for the stochastic
control problem of optimizing execution costs for portfolios

The N hidden layers of the subnetwork SNt are called {hl
t}Nl=1 and are displayed in green.

Next, the controls at at each time are approximated by the subnetworks and shown in
red. All cumulative costs are presented in yellow, while the stochastic noise that enters the
model and influences the evolution of states is denoted by ⇠t in purple.
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Notice that there are three types of arrows in this network, representing di↵erent types of
connections:

1. st h1
t . . . hN

t at is the multilayer feed-forward subnetwork SNt that
approximates the control at at time t, for t = 0, . . . , T � 2. The first subnetwork SN0
is indicated in gray as an example. The inputs to the t-th subnetwork are given by
the state variables st. Note that these subnetworks contain the parameters ✓t that
we want to optimize. We highlight again that there is no subnetwork for the last
period, as the remaining part of the order uT�1 will be executed at time T � 1.

2. (st,at, ⇠t+1) st+1 describes the model dynamics. The evolution of the states
is fully characterized by these connections. There are no parameters to optimize
here, as the state equations are fixed. Recall that st consists of the variables p̃t, xt

and ut (see Equation (24)). The evolution of all of these variables depends on their
predecessors in time, making it obvious that st+1 depends on st. Furthermore, the
trade decision at a↵ects st+1 by determining changes in the outstanding order ut+1

as described in (19). The random variable ⇠t+1, which contains all noisy information
that arrives between time t and t + 1, influences p̃t+1 and xt+1. Thus, ⇠t+1 must
contain the white noise �t+1 of the autoregressive process for the market conditions
xt, as detailed in (23), and must also include the information of the random normal
vector zt+1 that models the no-impact price dynamics, which we outlined in Equation
(21).

3. (st,at,Ct�1) Ct is the contribution to the total execution cost, which is the final
output of the deep neural network DNN. For t = 0 we only have (s0,a0) C0,
as there are no pre-existing costs. The composition of costs is described in detail in
Section 3.2.3.

The scope of the DNN in Figure 4 depends mainly on the choice of N , the number of hidden
layers per subnetwork, and the time horizon T . Overall, the network has, including the
input and output layers, (T � 1)(N + 2) layers in total. Choosing for example two hidden
layers in a model with time horizon T = 25, there will be 96 layers in total. To succeed
with this deep learning approximation approach, the connections listed above must be
implemented correctly, meaning the creation of the subnetworks and their careful linkage
through model dynamics. The programming realization of the execution cost model and
the implementation of the DNN is discussed in the next section.
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4 Implementation

This section gives an overview of how the execution cost model for portfolios is set up
in python and how the network architecture is implemented using TensorFlow. The deep
learning approach to solve the optimization problem of execution costs is realized on a
MacBook Pro 2018 with a 2.3 GHz Intel Core i5 processing unit. The program for the
approximation algorithm is written in python 3.7 on a Jupyter Notebook interface. Fur-
thermore, the open-source software library TensorFlow, which was developed by the Google
Brain team [11], is used to train the model. For this training, meaning the optimization of
the weights in the neural network, no GPU acceleration is used.

After a general introduction to TensorFlow, the four main parts of the written code are
presented. First, the execution cost model is built, including the initialization of the model
parameters and the implementation of the model dynamics of Section 3.2. It follows a short
part with configurations for the training, where the subnetwork architecture is defined and
hyperparameters, such as the learning rate, are specified. In the third part, the overall
architecture of the DNN is converted to a TensorFlow graph. This graph construction
represents the crucial part for implementing a deep learning algorithm and requires the
most work. The last part of the code runs a TensorFlow session that uses the predefined
graph to perform training and minimize loss. The full code can be seen in Appendix A.

4.1 Machine Learning with TensorFlow

The primary interface of TensorFlow is python. However, the core functionality of the
software is programmed in C++, ensuring a high performance. TensorFlow stores oper-
ations in a computation graph, which it can then run on a GPU or an external system.
This allows fast calculations and short training times of machine learning models. The
TensorFlow API is available at www.tensorflow.org.

TensorFlow utilizes dataflow graphs to perform the user’s computations (see Figure 5).
The graphs are composed of a set of nodes that represent operations. Each node can have
an arbitrary number of in- and outputs. Dataflow and dependencies of the nodes are de-
scribed by connecting edges [1]. The user’s program interacts with the TensorFlow system
by creating a TensorFlow session. A session is required to feed a graph with values for
its computations and evaluate certain nodes. Consequently, working with TensorFlow is
usually split in two phases. First, the graph construction phase, where the graph is defined.
Second, an execution phase, where a session is created to run parts of the graph on local
or remote devices. A major advantage of this dataflow model and the split of work is that
it allows parallel computing. This can significantly speed up the calculations and increase
the e�ciency of the program.
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In the case of building an ANN, the network architecture is converted to a TensorFlow
graph. Every neuron of each layer, as well as the application of the activation function and
the loss have to be considered. The training is then performed during a TensorFlow session
by feeding the graph with training data, repeatedly evaluating the node that represents
the loss and adjusting the weights according to an optimization algorithm.

4.1.1 Example of a TensorFlow Graph

An example of a TensorFlow graph is shown in Figure 5. In our example, the graph
represents the calculation of the function

L(W, b, x) = ReLU(W · x+ b) · 5.

Notice that there are di↵erent types of nodes in the graph. The node in gray represents
a TensorFlow constant (tf.constant) with a fixed value. The green nodes are TensorFlow
variables (tf.Variable). Later on, the parameters of the ANN, which means the weights and
biases or the weights and the shifting and scaling parameters for batch normalization, will
be of this type of nodes. This means that the tf.Variables hold the parameters that will
be adjusted during training and therefore targeted by the descent algorithm used. Hence,
we ultimately want to calculate the partial derivatives of the loss function with respect to
these nodes. In our example, one can interpret the function above as a cost function that
calculates the loss L based on the values of W , b and x (similar to (10)) by applying some
basic operations. The operations performed are represented by the orange nodes in the
graph.

Finally, the node in blue labelled x is a placeholder node (tf.placeholder). This type of
nodes is usually used for the training data. In a computation graph, they act similar to
a tf.constant, but can be assigned with di↵erent values for di↵erent runs of the graph.
For example, during the iterations of the optimization algorithm, these nodes are fed with
di↵erent data from the training batches.
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bn3
3

Wn1
4

xn2
2

·n5
8

+n6
11

ReLUn7
11

5n4
5

·n8
55

LL
55

Node Expression Value
n1 W 4
n2 x 2
n3 b 3
n4 5 5
n5 n1 · n2 8
n6 n5 + n3 11
n7 max(0, n6) 11
n8 n7 · n4 55
L n8 55

Table 1: Values of nodes

Figure 5: Example of a TensorFlow graph

Operation nodes can be evaluated in a TensorFlow session, after the initialization of the
input nodes (tf.Variables and tf.placeholders). For example, if we initialize the graph with
the values W = 4, b = 3 and feed the placeholder node x with the value 2, we receive a
value of L(4, 3, 2) = ReLU(4 · 2 + 3) · 5 = 11 · 5 = 55 for the output node L. The value of
each individual node is shown at the bottom right in red and can also be found in Table
1. We label the nodes n1 to n8 for clarity.

Understanding how a TensorFlow computation graph works is essential for a successful
implementation of a deep learning algorithm, because the architecture of the ANN must
be converted to such a graph. If this is done correctly, the training of the network be-
comes comparably simple and can exploit all advantages of the software. For instance, the
computation of the gradients of the loss function with respect to the network’s parameters
is done automatically by TensorFlow, which uses an automatic di↵erentiation technique.
The idea behind this method is explained in the next section by using the example graph
from above.
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4.1.2 Reverse Mode Automatic Di↵erentiation

TensorFlow uses reverse mode automatic di↵erentiation to compute gradients automati-
cally. This method is especially e�cient and accurate when there are many inputs and
few outputs, which is usually the case for ANNs [12]. Its goal is to compute all partial
derivatives of the output of a graph (the loss) with respect to relevant nodes (the weights)
by relying on the chain rule.

Coming back to the example in Section 4.1.1, we can manually compute the partial deriva-
tives of interest as

@L

@W
=

@(ReLU(W · x+ b) · 5)
@W

= x · 5 ·
(
0 if W · x+ b < 0

1 if W · x+ b > 0

and

@L

@b
=

@(ReLU(W · x+ b) · 5)
@b

= 5 ·
(
0 if W · x+ b < 0

1 if W · x+ b > 0.

Now, we look at how TensorFlow computes these partial derivatives automatically for given
values of the input nodes. In a first traversal of the graph, the values of each node are
computed in a forward direction, such as indicated in red in Figure 5. In a second pass,
all partial derivatives of L with respect to the tf.Variable nodes in green are computed by
going backwards through the graph, starting with the output L.

If we have any node ni in the graph and the reverse path from L to ni goes through the
intermediate node np, we call this node a parent node of ni. For example, if L = f(np) and
np = g(ni), with f and g being simple functions, np is a parent of ni. Using the multivariate
chain rule, we can derive the following formula for finding the partial derivatives:

@L

@ni
=
X

p2⇡(ni)

@L

@np

@np

@ni
, (30)

where ⇡(ni) contains the indices of all direct parent nodes of ni, meaning all parent nodes
that are directly connected to ni. Hence, for finding the partial derivative of L with re-
spect to any intermediate or input node, we only need the derivatives of its parents and
the formula to calculate the derivative of the simple function np = g(ni). The standard
derivatives for such basic operations (addition, subtraction, multiplication, division, expo-
nential function, matrix operations etc.) are known by TensorFlow [1] or can be added
manually by the user if needed.

In our example, we want to calculate @L
@W and @L

@b . Consequently, we want to calculate @L
@n1

and @L
@n3

for the tf.Variable nodes. We begin with @L
@n1

:
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The reverse pass starts at the output node L. We trivially have that @L
@L = 1. Since n8 = L

we also have

@L

@n8
= 1.

We continue down the graph towards n1 to n7. We know by (30) that

@L

@n7
=

@L

@n8|{z}
=1

@n8

@n7
=

@n8

@n7
.

In Table 1, we see the expression n8 = n7 ·n4. Therefore, we know that the partial derivative
is

@n8

@n7
= n4,

so @L
@n7

= n4. Note that n4 has the value 5 (see Figure 5).

Similarly, we can proceed to n6 with

@L

@n6
=

@L

@n7|{z}
=n4

@n7

@n6
.

The partial derivative @n7
@n6

is

@n7

@n6
=

@ReLU(n6)

@n6
=

(
0 if n6 < 0

1 if n6 > 0,

which we know from Section 2.2.3. Due to the fact that the value of n6 is 11 > 0 and
n4 = 5, the value of @L

@n6
is also 5.

The process continues until we reach the tf.Variable input node n1. We have

@L

@n5
=

@L

@n6

@n6

@n5
and

@L

@n1
=

@L

@n5

@n5

@n1
,

because ⇡(n5) = {6} and ⇡(n1) = {5}. Furthermore, we can compute @n6
@n5

= 1 and
@n5
@n1

= n2 = 2.

Finally, we can calculate the value of the partial derivative of L with respect to the input
W by substituting what we calculated and multiplying the partial derivatives:

@L

@W
=

@L

@n1
=

@L

@n8
· @n8

@n7
· @n7

@n6
· @n6

@n5
· @n5

@n1
= 1 · n4 ·

(
0 if n6 < 0

1 if n6 > 0
· 1 · n2 = 5 · 2 = 10.
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Now, @L
@b is calculated the same way, by going down the edges in the graph from L to n3:

@L

@n3
=

@L

@n8
· @n8

@n7
· @n7

@n6
· @n6

@n3
= 1 · n4 ·

(
0 if n6 < 0

1 if n6 > 0
· 1 = 5.

Notice that this aligns with the solution found by manual di↵erentiation when inserting the
same values for W , b and x. This technique allows TensorFlow to automatically calculate
the gradients needed for the gradient descent optimization and is very e�cient, because it
only requires one forward pass and one backward pass to compute the partial derivatives
of the output with respect to all inputs of a neural network. Additionally, the application
of the chain rule illustrates again the risk of running into the vanishing gradient problem
of Section 2.2.3. If the values of the derivatives of the activation function in an ANN are
small, the gradient can diminish.

4.2 Setting up the Execution Cost Model

In this first part of the code, the parameters of the execution cost model that cannot
be influenced by the investor and that are necessary for calculating the total execution
costs are initialized, such as the initial no-impact prices of the stocks in the portfolio and
the matrices A, B and C (see Section 3.2). In addition, it includes the calculation of
an analytical optimal solution to the execution cost model given the above mentioned
parameters. This is done according to the dynamic programming algorithm presented by
[3]. The analytical optimal solution is important to evaluate the performance of the neural
network. However, it is not relevant for training. Finally, the sampling of training data is
specified by implementing the model dynamics.

4.2.1 Initialization of Model Parameters

The parameters of the model are assigned with realistic values. However, we do not use real
world data, but create the values and the training data artificially, based on the empirical
example in [3] as a benchmark. Consequently, some assumptions regarding the underlying
distributions of the parameters have to be made. Parameters that can be influenced by
the investor, such as the number of stocks in the portfolio n or the order that has to be
executed ā, are defined deterministically in the configurations part (see Section 4.3).

We make the following assumption about the matrix A in the execution cost model, which
measures the price impact’s sensitivity to the current trade size:
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Assumption 1 (Elements of A). Let ⇤ > 0 be a constant. We assume the elements of A
to be distributed uniformly according to

Aij ⇠ U(�⇤,⇤), i, j = 1, . . . , n, i 6= j,

Aii ⇠ U(4⇤, 6⇤), i = 1, . . . , n.

Making the size of the elements ofA dependent on the factor ⇤ allows the testing of varying
degrees of influence of the trade size on the price impact. In the numerical experiments,
we find out that this factor plays an important role for the overall range of execution costs.
Moreover, note that the price impact from trading on the same stock is assumed to be
significantly higher than the cross-stock price impact. The cross-stock price impact can
also be negative.

Looking at the network architecture in Figure 4, we require an initial state s0. Hence, the
initial no-impact prices p̃0 of the n stocks and the initial market conditions x0, which are
part of the initial state, have to be defined. The following assumptions are made:

Assumption 2 (Initial No-Impact Prices). The initial prices p̃0 of the n stocks are assumed
to be distributed uniformly between 1 and 100:

p̃i0 ⇠ U(1, 100), i = 1, . . . , n.

The starting point for the autoregressive process xt is assumed to be distributed as follows:

Assumption 3 (Initial Market Conditions). The elements of the initial vector for the
market conditions x0 are drawn randomly from a normal distribution with mean 0 and
variance 0.5.

xi0 ⇠ N (0, 0.5), i = 1, . . . ,m.

For the initialization of the other parameters, such as the matrices B and C, as well as
the vector µz, we refer to Appendix B.

4.2.2 Sampling of Training Data

To train the model, we also need samples of the process {⇠t}T�1
t=1 as input to the DNN, besides

the initial state s0 (see again Figure 4). To be more precise, we need python functions
that create samples of the processes {xt}T�1

t=0 and {p̃t}T�1
t=0 when given a start value. The

modelling of the evolution of these state variables is done according to equations (21) and
(23). The exact code for the two python functions can be found in Appendix A.2.

In Figure 6, we show three samples of the no-impact price development of one stock with
fixed initial no-impact price p̃i0 = 50. For this visualization, the parameters µz and ⌃z are
also chosen manually. A time horizon of T = 25 and T = 500 is selected.
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Figure 6: Simulations of the no-impact price development of one stock with initial price
50. The values µz = 10�6 and ⌃z = 0.001 are fixed deterministically.

The graphs in Figure 6 show the simulation of the no-impact price development created by
a python function. Similarly, a function that creates samples of the vector autoregressive
process of {xt}T�1

t=0 is created. During training, these two functions are used to create the
training batches that are fed to the DNN.

4.3 Training Configurations

The configurations part exists in order to let the user change fundamental parameters of
the execution cost model or the training process quickly (see Appendix A.3). Examples for
these parameters are the number of stocks in the portfolio n, the order size ā, the number
of market conditions m and the time horizon T . Furthermore, the network architecture
for the subnetworks {SNt}T�2

t=0 is decided here. Lastly, this part includes some training
specifications, such as the batch size and the learning rate.

4.3.1 Architecture of Subnetworks

Regarding the architecture of the subnetworks, the number of hidden layers N and the
number of neurons per hidden layer can be chosen. An example of such a subnetwork
SNt is shown in Figure 7. For this illustration, we choose N = 2 hidden layers with 100
neurons per layer. This is the same number of layers and neurons that we select for the
final numerical experiments. The state variabes st 2 Rd with d = 2n + m represent the
inputs (see (24)) and the controls at are the outputs of the subnetwork.
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Figure 7: Architecture of a fully connected feed-forward subnetwork SNt that
approximates the controls at time t

Choosing for instance n = 10 and m = 3, each subnetwork has 13.300 = (2n + m)100 +
1002 + 100n weights. When n is 100, we even get 40.300 weights. This shows again the
high-dimensionality of the parameter space of the loss optimization problem in (12), which
we want to solve during training.

Due to the fact that we use batch normalization to speed up training and reduce the van-
ishing gradient problem described in Section 2.2.3, we do not include a bias term in the
architecture of the subnetworks. Batch normalization is adopted for each subnetwork and
is performed just before applying the activation function (see Figure 8). The activation
function applied at all hidden layers of the subnetworks is the ReLU function (see (9)).
This choice is made based on the findings of Section 2.1.3.
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4.3.2 Other Training Specifications

The last configurations needed for the training are, for instance, the size of the training
batches K and the size of the validation sample. In addition, the maximum number of
iteration steps for the optimization algorithm is defined here, as well as a learning rate or
a learning rate schedule (see Section 2.3.2).

We decide to use the Adam optimization method described in Algorithm 4 for training.
Due to the fact that Adam is an adaptive learning rate optimization algorithm, we as-
sume that it is su�cient to use a simple implementation of learning rate scheduling that
requires less fine tuning. Hence, we apply a predetermined piecewise constant learning rate
to accelerate learning and at the same time converge to a good solution. In this schedul-
ing method, the learning rates and its reductions are fixed before training. Although this
might work very well, the timing and the decrease rate have to be analyzed carefully. The
outcome of the fine tuning of the learning rate for our model can be found in 5.3 in the
results section. In addition to the learning rate scheduling, we double the batch size after
each learning rate change, choosing the initial batch size to be K = 64 and the size of the
validation sample to be 512.

All of the above configurations are contained in an object of a python class that can
be passed on to other python functions. For example, the function that creates samples
of the process {p̃t}T�1

t=0 is fed with the batch size K, as well as n and T . It requires
this information to produce the right number of sample paths of length T for n stocks.
Moreover, the configurations are needed for the construction of the TensorFlow graph,
which is described in the next part.

4.4 TensorFlow Graph Construction

In this part of the code, the architecture of the deep neural network presented in Figure 4 is
implemented as a TensorFlow graph. In the beginning, all fixed parameters of the execution
cost model are converted to TensorFlow constants, so that they can be called in the graph
when needed. The same applies for the parameters defined in the configuration section 4.3.

To keep the construction of this TensorFlow graph clear, several python functions are
defined that can be interpreted as operation nodes in the overall graph. However, these
functions apply multiple basic operations to their inputs in order to arrive at their out-
puts, which means that they can be represented as TensorFlow graphs themselves. As an
example, batch normalization is defined in a function according to Algorithm 3. It takes
as inputs the incoming signals of a training batch at a specific layer in a given subnetwork
SNt, the respective trainable shifting and scaling parameters, �l

t and �l
t, as tf.Variables and

a smoothing term as a tf.constant. The function’s outputs are the transformed signals. In
the overall graph, we can then call this function as one operation node, without having to
specify the subgraph for the complete batch normalization algorithm again.
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We know that our DNN consists of subnetworks, which in turn consist of N + 2 layers.
Hence, we implement the overall network by defining three main python functions:

1. A python function next layer() that passes on signals from one layer to the next layer
in any of the subnetworks. This is very similar to (5) combined with the application
of batch normalization.

2. A python function Subnetwork t() that performs the signal pass-through for a whole
subnetwork, by repeatedly calling the function next layer().

3. A python function DNN cost() that calculates the total cost CT�1 and C$ of ex-
ecuting the order ā in time T , by trading {at}T�1

t=0 . It calculates the trades at by
repeatedly calling the function Subnetwork t() and adding up the intermediate costs,
such as illustrated in Figure 4.

The definition of these functions in the code can be found in the graph construction part
of Appendix A.4. Note that each of these functions can handle a full training batch in the
code simultaneously. However, for an easier explanation of their functionality, we use one
training example only and set the number of hidden layers as N = 2.

The next layer() function takes as input the outputs from the previous layer, calculates the
weighted sum of these signals and transforms them via batch normalization. Afterwards,
it produces the outputs of the layer by applying the ReLU activation function if it is not
the final layer in a subnetwork. The code for this python function and the corresponding
created TensorFlow graph is presented in the following figure:
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ŷl+1
tout

Figure 8: Code and visualization of the TensorFlow graph for the next layer() function
applied at a hidden layer in an arbitrary subnetwork

Notice that the input trainable params to the next layer() function is a python dictionary
containing the trainable parameters for this layer and subnetwork, which are the weights,
as well as the batch normalization parameters (see tf.Variable nodes in green in Figure 8).
The index t and l show that the parameters belong to the l-th layer of subnetwork t. More-
over, as mentioned before, batch normalization() is a separately defined function that is
just represented as one operation node in this illustration of the corresponding TensorFlow
graph. The full code with the batch normalization() function can be found in Appendix
A.4.
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The python function Subnetwork t() performs the feed-forward pass for one subnetwork
SNt. It is basically the implementation of the architecture in Figure 7. It takes as inputs
the state variables st and applies the next layer() function N +1 times, until the outputs
at are produced. In addition, it outputs the intermediate cost ct for trading at of the
stocks in the portfolio. The intermediate costs are calculated according to (25), where we
again call a separately defined python function. The code for the Subnetwork t() function
can be found below.

Finally, we define the function DNN cost() that represents the complete TensorFlow
graph for the calculation of C$ (see (28)), the total execution costs above the no-impact
cost. Hence, the function takes many di↵erent inputs. For example, it takes as tf.constants
all parameters of the execution cost model, such asA, B andC. Furthermore, it is fed with
a collection of all weight matrices W = {W 1

0 ,W
2
0 ,W

3
0 ,W

1
1 , . . . . . . ,W

1
T�2,W

2
T�2,W

3
T�2} and

all scaling and shifting parameters as tf.Variables. These are the parameters of the DNN
that we want to train and we use TensorFlow and automatic di↵erentiation to calculate the
gradient of the output C$, which is our loss, with respect to all of these trainable parameters.

In addition, the graph has tf.placeholder nodes, which we can use to feed it with batches
of sample simulations of the processes {xt}T�1

t=0 and {p̃t}T�1
t=0 as described in Section 4.2.2.

Then, the DNN cost() function calculates the controls at and the intermediate costs ct
for each time step by repeatedly applying the Subnetwork t() function described above.
It also keeps track of the remaining order ut according to (19) and transfers the value to
the next subnetwork as part of the state variables. Lastly, it adds up all intermediate costs
to arrive at the total cumulative cost CT�1 and calculate the loss C$.

In the end of the graph construction phase, C$ is the output of the TensorFlow graph
created by the DNN cost() function and serves as the loss function that will be targeted
by the Adam optimization method during training, which is discussed in the next section.
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4.5 Creating a TensorFlow Session

In the final part of the code, a TensorFlow session is created, where the parameters of the
DNN are initialized and the training is conducted by using an optimization algorithm that
adjusts the weights and other trainable parameters based on the data of sampled training
batches.

4.5.1 Initialization of Trainable Parameters

The number of weight matrices required for the overall network depends on the number
of hidden layers in each subnetwork N and the time horizon T . As we choose N = 2, we
need 2+ 1 weight matrices per subnetwork. In total, we have 3(T � 1) weight matrices, as
well as one scaling and one shifting parameter per weight matrix. The dimensions of the
weight matrices depend on the number of stocks in the portfolio n, the sources of market
information m and the number of neurons per hidden layer. The information of these
specifications is received from the configuration part (see Section 4.3). With the choice of
N = 2 and 100 neurons per hidden layer, we conclude that for each t = 0, . . . , T � 2 the
matrix W 1

t is a 100⇥ d matrix, W 2
t 2 R100⇥100 and W 3

t 2 Rn⇥100 (see Figure 7 and Section
2.1.2). Recall that the matrix W l

t holds the weights for the connections between layer l
and l + 1 in subnetwork SNt for l = 1, 2, 3 and that d = 2n+m.

In Section 2.2.3 we learned that the initialization of the weights is very important for
preventing the vanishing gradient problem [9]. Therefore, we use the weight initialization
strategy for the ReLU activation function suggested by [15] and [12], which is found to
perform best for deep neural networks. This means that all weights are initialized using a
truncated normal distribution. The mean of this distribution is 0 and the standard devia-
tion is 2p

Nl+Nl+1
, where Nl is the number of neurons in layer l.

4.5.2 Running the Adam Optimizer

The initialized weights are passed on to the TensorFlow graph as tf.Variables. We choose
the Adam algorithm to optimize these parameters and solve the problem shown in (29).
Furthermore, we use the configurations of the hyperparameters ↵1 and ↵2 suggested by
[20] and set ↵1 = 0.9 and ↵2 = 0.999, as well as ✏ = 10�8.

Next, the loss C$ of the computation graph is defined as output of the functionDNN cost()
and passed on to the Adam optimizer as objective function:

C_T_D, RCE = DNN_cost(tfg, ecm_tf, ecm, ones, p_tilde_t, x_t, trainable_params)

optimizer = tf.train.AdamOptimizer(learning_rate=config.learning_rate).minimize(C_T_D)

Note that this is very simple to implement in TensorFlow and that we label C$ as C T D
in the code. Before the training starts, a validation sample is created in order to enable
the monitoring of the learning curve:
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p_tilde_t_validation = ecm.P_simu(config.valid_sample_size)

x_t_validation = ecm.X_simu(config.valid_sample_size)

ones_validation = np.ones((config.valid_sample_size,1))

feed_dict_validation = {p_tilde_t: p_tilde_t_validation, x_t: x_t_validation, \

ones: ones_validation}

Here, the functions P simu() and X simu() are the python functions discussed in Sec-
tion 4.2.2 that sample the training data or validation set. During the training process,
training batches are created similarly by these functions and are fed to the graph into the
corresponding tf.placeholder nodes. Then, the output node for the loss C$ is evaluated by
conducting a forward pass through the complete graph. Subsequently, the gradient of the
loss with respect to all trainable parameters is calculated by TensorFlow using automatic
di↵erentiation (see Section 4.1.2). Using this gradient, the Adam optimizer performs one
parameter update according to the rules in Algorithm 4. All of these actions are condensed
in only one line of code:

sess.run(optimizer, feed_dict={p_tilde_t: p_tilde_t_train, x_t: x_t_train, \

ones: ones_batch})

Here, we see how easy the training of the network becomes after having carefully set up
the computation graph and execution cost model. The procedure of updating the trainable
parameters is repeated until the maximum number of iteration steps is reached. Progress
made is displayed continuously with the validation data after a fixed number of iterations.

At the end, a summary of the results is presented and the training duration is measured.
Then, the fully trained weights are extracted from the TensorFlow graph and the session
is closed. Finally, a test sample is drawn and the average total execution cost above the
no-impact cost for the test sample is calculated to evaluate the performance of the model
and check whether it was overfitted or not. The full code can be seen in Appendix A.5.
Numerical results for di↵erent configurations of the experiment can be found in the next
section.
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5 Results of Numerical Experiments

5.1 Performance of the Deep Neural Network

5.1.1 Relative Execution Costs

We first analyze the DNN’s performance by investigating the relative execution cost com-
pared to the optimal analytical solution of the dynamic programming algorithm for di↵erent
time horizons. For this purpose, we fix n = 10 and m = 3. Hence, we get at 2 R10 for the
control variables and st 2 R23 for the state variables, which determines a high-dimensional
stochastic control problem according to our execution cost model. For simplicity, we choose
āi = 10 for all i = 1, . . . , n and ⇤ = 0.0001. The number of hidden layers per subnetwork
and the number of neurons per layer are kept the same as in Figure 7: N = 2 hidden layers
consisting of 100 neurons each. Furthermore, we specify the initial batch size as 64 and
the learning rate as 0.001. In Figure 9, we plot the learning curves for three di↵erent time
horizons T = 20, 25, 30 and the above mentioned configurations over 15000 iterations.

Figure 9: Relative execution costs on the validation sample during training compared to
the optimal analytical solution over di↵erent time horizons. One curve represents the

average costs for one time horizon over five di↵erent random seeds and training runs. The
dashed lines show the mean ± the standard deviation of the five runs.
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The average running times for one training run is 2732 s, 3499 s, 4315 s for T = 20, 25, 30.
The black dotted line in Figure 9 represents the optimal analytical execution cost C$

optimal

(see (28)) rescaled to 1. Thus, the learning curves represent the value

C$
relative =

C$
validation

C$
optimal

(31)

at the current iteration during training, where C$
validation is the average execution cost of

the validation sample in cents per share above the no impact cost. After training, the
DNN’s performance is evaluated on a test sample of size 32 · 64 = 2048 (a multiple of the
training batch size). The average relative trading costs over five random seeds on test data
are 1.001, 1.004, 1.005 for T = 20, 25, 30 respectively.

Overall, the DNN performs very well and can execute the order ā at near-optimal execution
costs. Moreover, we observe that the accuracy declines a little with increasing time horizon,
which is to be expected due to the fact that unfavorable deviations from the optimal
solution accumulate in the cost over time.

5.1.2 Relative Control Error

To further investigate the deviations between the trading decisions of the DNN and the
optimal trading strategy, we define the relative control error (RCE) for one training sample
as follows:

RCE =
1

T � 1

T�2X

t=0

|at � aoptimal
t |

aoptimal
t

. (32)

Note that the trade in the last period is not taken into account, as it is just the remaining
part of the order. The average RCE over the validation sample during training for one
time horizon T = 20 is monitored in Figure 10.
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Figure 10: Relative control error RCE on the validation sample during training
compared to the optimal trading strategy for T = 20 over five di↵erent training runs.

The dashed lines show the mean ± the standard deviation of the five runs.

We observe that the trading strategy computed by the network approximates the exact
solution well. This means that the trades that are executed by the network mimic the
optimal trading strategy to a certain degree. On test samples, the average RCE over five
di↵erent random seeds is 6.2%, 11.4%, 15.6% for T = 20, 25, 30.

In Figure 10, we see that there are some bumps in the curve for T = 20 and that there are
moderate di↵erences between di↵erent training runs. This is assumed to result from the
fact that the deep neural network is not specifically asked to minimize the relative error of
the trades compared to the exact solution. It is only trained to minimize total execution
costs for completing the order over the fixed time horizon, independently of the trading
strategy used. Hence, the curve for the RCE is not as smooth as the learning curve for the
relative costs, where the gradient descent algorithm gradually moves towards a minimum
on the surface of the loss function. The reason why the network mimics the optimal trading
strategy, instead of developing a completely di↵erent strategy that achieves near-minimal
cost, is assumed to lie in the nature of the execution cost model and of the cost function.
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5.2 Sensitivity Analysis

5.2.1 Varying Time and Portfolio Size

After looking at relative execution costs and having tested the performance of the network
in terms of its ability to approximate the optimal solution for one configuration of the
model, we conduct a sensitivity analysis of the absolute optimal execution costs. Subse-
quently, we evaluate whether the network can reproduce its high performance for a more
realistic and complex setting of the execution cost model. In a first step, we compute and
compare the optimal execution costs for di↵erent portfolio sizes and time horizons, which
can be seen in Figure 11.

Figure 11: Optimal expected execution costs in cents per share above no-impact costs for
di↵erent time horizons and numbers of stocks in the portfolio. The purple line represents

the average execution costs for one time horizon over the three portfolio sizes
n = 10, 25, 50. Other configurations for this experiment are m = 3, āi = 10 and

⇤ = 0.0001.

The primary observation that we make is that expected execution costs fall with increas-
ing time horizon. The line plot of the average visualizes this trend. This happens due
to the fact that trading can be split over more time periods and because of the resulting
flexibility to wait for more favorable conditions to trade [3]. Second, we notice that a
larger portfolio leads to higher expected execution costs in most cases. Moreover, while
the costs for n = 25 and n = 50 are similar, the costs for portfolios with only 10 di↵erent
stocks are considerably lower. However, it is expected that this trend is not necessarily
true in general, but only for our configuration of the execution cost model. It could be, for
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instance, that including more stocks that are negatively correlated to the existing stocks
in the portfolio decreases overall execution costs per share. Trading in one stock could
lead to lower execution prices in another stock via the price impact and therefore lead to
lower expected execution costs in total compared to a portfolio without this security. This
phenomenon is known as diversification e↵ect.

In addition, we find the absolute optimal execution cost of our model to be significantly
higher than the costs calculated in the empirical example in [3]. This is of course a result
of the choice of the model parameters. In Figure 11, for each time horizon, the expected
optimal execution costs are more than 50 cents per share, going up to 250 for T = 5. In
comparison, execution costs in the research in [3] only range from -8 to 14 cents per share.
A major factor that influences the range of execution costs is the sensitivity of the price
impact to the order size in our model. Thus, we analyze the optimal costs for varying
values of ā and configurations of the matrix A in the next section.

5.2.2 Varying Order Size and Price Impact

To arrive at more realistic execution costs, we need to select a reasonable scale for the
elements of A, which measures the sensitivity of the price impact in the execution price
to the trade size (see Section 3.2.2). Remember that in our implementation of the model,
the scale of the elements of A is determined by ⇤ (see Section 4.2.1). In the previous
experiments, we chose ⇤ = 0.0001 and āi = 10. However, this led to unrealistically high
execution costs. Moreover, the approach to solve the execution cost problem is developed
for large institutional investors, who’s order size can reach 10000 or more. So, the costs
would be even higher for these large trades. Hence, we develope a heatmap in Figure 12
that shows optimal expected execution costs for di↵erent order sizes and values of ⇤. Based
on this table, we can make a more realistic choice of ⇤.

Figure 12: Optimal expected execution costs in cents per share above no-impact costs for
di↵erent order sizes and values of ⇤. Low execution costs are indicated in green, while
high costs are shown in red. Other configurations for this experiment are m = 3, n = 10

and T = 20.
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We see in Figure 12 that increasing the order size or ⇤ results in higher expected optimal
execution costs. By using the same random seed, we notice that scaling āi or ⇤ by the same
factor has the same e↵ect on costs. This is no surprise, because we use a linear percent-
age price impact model and the scalar has the same influence on the price impact �t in (22).

Setting for example ⇤ = 0.00001 and āi = 10, we receive 3.46 as execution costs in cents
per share, which is closer to the solutions in the empirical example of [3]. Nevertheless,
for larger trade sizes, the price impact is still too high. Hence, we change āi to 1000 and
decrease ⇤ to 1e-7. Therefore, we reduce the values of A, which now lie in a similar range
as in [3]. Although not shown in the heatmap, this produces optimal execution costs of
3.46 as well. We then repeat the experiment from above and test the networks performance
on these more realistic and adjusted configurations. This time, we plot the learning curves
in absolute values. The results for three di↵erent training runs can be found in Figure 13.

Figure 13: Absolute execution costs on the validation sample of three di↵erent training
runs. The respective optimal analytic solution is shown as a dotted line. The
configurations for this experiment are m = 3, n = 10, T = 20, āi = 1000 and

⇤ = 0.0000001. We use 25000 iteration steps and a learning rate of 0.05 for training.

We first observe that optimal absolute execution costs for two of the three training runs on
randomly drawn validation samples of our experiment are negative. Remember that due
to the fact that we do not use no-sales constraints, the network can decide to sell stocks
over the given time periods, as long as it completes the full order by time T . Consequently,
if the price impact and the trade size are low, execution costs can turn negative and the
networks trading strategy can optimally use the information available and execute orders
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at a profit. In this case, the impact of information dominates the price impact from the
shares traded, which are both components of the execution price.

Next, we notice that at only 15000 iterations, the di↵erence between the learning curves
and the corresponding optimal cost is big. In order to still receive a good convergence,
we increase the learning rate to 0.05 and the iteration steps to 25000. As a result, the
average running time for these three training runs grows to 4491s. Using the same learning
rate as in the experiment in Figure 9 would take even longer to train the model for this
configuration. However, using a higher constant learning rate prevents the optimization
algorithm during training to accurately approximate the minimum of the loss function.
We see this, for instance, in Figure 13 at the blue learning curve, which does not reach the
optimum. Altogether, this highlights again the importance of the fine tuning of training
specifications, which have to be re-calibrated for each new configuration of the model. An
application of a learning rate schedule, where the learning rate is decreased towards the
end of training, can help improve the convergence (see below in Section 5.3).

Lastly, we evaluate the trained network for each of the three training runs on test data. For
all test samples drawn, the execution costs achieved with the optimal analytical trading
strategy are found to be negative. Consequently, we can speak of profits realized by
trading. The network achieves 98.5%, 96.3% and 96.0% of these profits. Compared to
the performance of the network for the configurations in Section 5.1.1, this is slightly
more inaccurate. Yet, the network still demonstrates the ability to approximate well the
optimal execution costs (or profits) for a more complex configuration of the problem with
a considerably higher order size. It is expected that this approximation can even be
improved by using a smaller learning rate. To find a good balance between running time
and accuracy, we conduct the following analysis of the learning rate.

5.3 Fine Tuning of the Learning Rate

For the next experiment, we choose n = 10, T = 25 andm = 3. In addition, we set āi = 100
and ⇤ = 1e-5, to get a compromise between the fast running times of the configurations
in 5.1.1 and the complexity of the model in 5.2.2. In order to determine an appropriate
learning rate schedule, we first visualize the learning curves for di↵erent values of a fixed
learning rate. These learning curves can be found in Figure 14.
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(a)

(b)

Figure 14: Relative execution costs on the validation sample during training compared to
the optimal analytical solution for di↵erent constant learning rates and a learning rate

schedule. Plot (a) shows the full learning curves during training, while (b) only shows the
costs close to the optimal solution. 15000 iteration steps are monitored.
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We observe that the orange colored learning rates 0.0005 and 0.001 are too small. Learn-
ing of the network with these rates happens too slowly and the Adam algorithm cannot
converge during the 15000 training iterations. The learning rates shown in blue are too big
(0.1 and 0.05). Although the relative execution cost decreases very quickly during training
for these rates, the optimal solution cannot be approximated adequately, because the step
size is too large. Hence, the curves oscillate heavily and jump around the optimum as seen
in the zoomed illustration in Figure 14 (b).

The ideal learning curve for this configuration of the execution cost model lies in between
0.01 and 0.005, as we can obtain fast progress in the beginning and still converge to a
good solution in time. Therefore, we choose a learning rate schedule with a predetermined
piecewise constant learning rate, where we incrementally decrease the learning rate when
the curve starts to flatten. The learning curve with the learning rate schedule is visualized
in pink in Figure 14. We select an initial rate of 0.005 and decrease it after 15% of the
training to 0.001. Finally, towards the end of training after 80% and 90%, we decrease
it again in order to prevent oscillations and approximate the optimum as accurately as
possible. In Figure 14 (b) we can observe that this works better than just choosing a
learning rate of 0.01 and convergence is smoother.
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6 Conclusion

In this thesis, we implement a deep learning approach to solve the high-dimensional stochas-
tic control problem of minimizing execution costs for portfolios in a finite time horizon. The
idea is to approximate the optimal trading strategy at each time step using feed-forward
neural networks. Stacking these networks together forms a very deep neural network that
can learn to trade e�ciently and minimize loss, which is defined as the total execution costs.

The challenge in the implementation of the deep learning algorithm is the correct intercon-
nection of the subnetworks based on the dynamics of the stochastic execution cost model.
The architecture of the overall deep neural network must be specified very carefully. More-
over, the incorporation of several training acceleration techniques adds complexity to the
model. However, this prevents slow learning and facilitates the evaluation of the network’s
performance.

Numerical results of our experiments suggest that the deep learning approach approximates
the optimal solution very well. The network learns to trade with near-optimal execution
costs and can handle the high-dimensionality of the portfolio problem. However, it requires
the fine tuning of training parameters, such as the learning rate, in order to do so in a
reasonable running time. Furthermore, it not only learns to trade with minimal execution
costs, but also to mimic the optimal trading strategy.

The training data, as well as the model parameters are predominantly created artificially
in this thesis. Therefore, it is important to make realistic assumptions in order to arrive at
appropriate execution costs. For a real-world application in practice, however, many of the
parameters are unknown and must be estimated in a costly procedure. This applies espe-
cially to the parameters of the price modelling, such as the cross-stock price impact from
trading. In addition, changing the underlying portfolio, for example adding new stocks,
requires a frequent re-calibrating of these parameters. Hence, the integration of the deep
learning approach in the investment process of an institutional investor can be challenging.

Nevertheless, the general idea of solving high-dimensional stochastic control problems with
the use of artificial intelligence is very promising. The deep learning approach to the execu-
tion cost problem could be adapted to other fields of research, such as a resource allocation
problem. Approximating time dependent controls is shown to work very well with fully
connected feed-forward neural networks in this thesis. Depending on the application, the
model dynamics that define the exact connection of these subnetworks need to be adjusted.
Then, the presented approach is expected to avoid the curse of dimensionality that many
real stochastic problems are su↵ering of and to o↵er an accurate and fast approximation
of the optimal solution.
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7 Appendix

Appendix A: Code
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Appendix B: Assumptions for Execution Cost Model

Assumption 4 (Mean of zt).

(µz)i ⇠N (0, 1e�5), i = 1, . . . , n.

Assumption 5 (Elements of B).

Bij ⇠ U(0.5e�4, 1.5e�4), i = 1, . . . , n, j = 1, . . . ,m.

Assumption 6 (Elements of C).

Cij ⇠N (0, 0.5), i, j = 1, . . . ,m.
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